Hexagonal design for stiffening trusses

被引:5
作者
Gazzola, Filippo [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
关键词
Optimal design; Plates; Elasticity; 4TH-ORDER DIFFERENTIAL-EQUATIONS; TORSIONAL RIGIDITY; BLOW-UP; BOUNDARY; POLYGON; RODS;
D O I
10.1007/s10231-013-0366-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem of choosing the best design for stiffening trusses of plates, such as bridges. We suggest to cover the plate with regular hexagons that fit side to side. We show that this design has some important advantages when compared with alternative designs.
引用
收藏
页码:87 / 108
页数:22
相关论文
共 20 条
  • [1] [Anonymous], PREPRINT
  • [2] [Anonymous], 1976, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze
  • [3] [Anonymous], 2010, LNM
  • [4] [Anonymous], 2005, McKinley v. City of Mansfield
  • [5] Antunes P., PREPRINT
  • [6] Arioli G., PREPRINT
  • [7] Bender C., 1872, AM SOC CIVIL ENG, V1, P27, DOI DOI 10.1061/TACEAT.0000003
  • [8] Qualitative behavior of global solutions to some nonlinear fourth order differential equations
    Berchio, Elvise
    Ferrero, Alberto
    Gazzola, Filippo
    Karageorgis, Paschalis
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (10) : 2696 - 2727
  • [9] Bleich F., 1950, The Mathematical Theory of Vibration in Suspension Bridges
  • [10] A sharp upper bound for the torsional rigidity of rods by means of web functions
    Crasta, G
    Fragalà, I
    Gazzola, F
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (03) : 189 - 211