Monosodium Glutamate Induces Changes in Hepatic and Renal Metabolic Profiles and Gut Microbiome of Wistar Rats

被引:25
作者
Nahok, Kanokwan [1 ,2 ]
Phetcharaburanin, Jutarop [1 ]
Li, Jia, V [3 ]
Silsirivanit, Atit [1 ]
Thanan, Raynoo [1 ]
Boonnate, Piyanard [1 ]
Joonhuathon, Jarus [4 ]
Sharma, Amod [2 ]
Anutrakulchai, Sirirat [2 ,5 ]
Selmi, Carlo [6 ,7 ]
Cha'on, Ubon [1 ,2 ]
机构
[1] Khon Kaen Univ, Fac Med, Dept Biochem, Khon Kaen 40002, Thailand
[2] Khon Kaen Univ, Chron Kidney Dis Prevent Northeast Thailand CKDNE, Khon Kaen 40002, Thailand
[3] Imperial Coll London, Fac Med, Dept Metab Digest Dis & Reprod, London SW7 2AZ, England
[4] Khon Kaen Univ, Northeast Lab, Anim Ctr, Khon Kaen 40002, Thailand
[5] Khon Kaen Univ, Fac Med, Dept Internal Med, Khon Kaen 40002, Thailand
[6] Humanitas Clin & Res Ctr IRCCS, Rheumatol & Clin Immunol, I-20089 Milan, Italy
[7] Humanitas Univ, Dept Clin Biosci, I-20090 Milan, Italy
关键词
monosodium glutamate; gut microbiota; metabolic pathway; metabolomics; microbiome; trimethylamine; TRIMETHYLAMINE-N-OXIDE; SPECTROSCOPY; CONVERSION; PLASMA; HEALTH; HOST; MSG;
D O I
10.3390/nu13061865
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
The short- and long-term consumption of monosodium glutamate (MSG) increases urinary pH but the effects on the metabolic pathways in the liver, kidney and the gut microbiota remain unknown. To address this issue, we investigated adult male Wistar rats allocated to receive drinking water with or without 1 g% MSG for 2 weeks (n = 10, each). We performed a Nuclear Magnetic Resonance (NMR) spectroscopy-based metabolomic study of the jejunum, liver, and kidneys, while faecal samples were collected for bacterial DNA extraction to investigate the gut microbiota using 16S rRNA gene sequencing. We observed significant changes in the liver of MSG-treated rats compared to controls in the levels of glucose, pyridoxine, leucine, isoleucine, valine, alanine, kynurenate, and nicotinamide. Among kidney metabolites, the level of trimethylamine (TMA) was increased, and pyridoxine was decreased after MSG-treatment. Sequencing of the 16S rRNA gene revealed that MSG-treated rats had increased Firmicutes, the gut bacteria associated with TMA metabolism, along with decreased Bifidobacterium species. Our data support the impact of MSG consumption on liver and kidney metabolism. Based on the gut microbiome changes, we speculate that TMA and its metabolites such as trimethylamine-N-oxide (TMAO) may be mediators of the effects of MSG on the kidney health.
引用
收藏
页数:15
相关论文
共 46 条
[1]   Accumulation of trimethylamine and trimethylamine-N-oxide in end-stage renal disease patients undergoing haemodialysis [J].
Bain, MA ;
Faull, R ;
Fornasini, G ;
Milne, RW ;
Evans, AM .
NEPHROLOGY DIALYSIS TRANSPLANTATION, 2006, 21 (05) :1300-1304
[2]   Statistical methods for the analysis of high-throughput metabolomics data [J].
Bartel, Joerg ;
Krumsiek, Jan ;
Theis, Fabian J. .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2013, 4 (05)
[3]   Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts [J].
Beckonert, Olaf ;
Keun, Hector C. ;
Ebbels, Timothy M. D. ;
Bundy, Jacob G. ;
Holmes, Elaine ;
Lindon, John C. ;
Nicholson, Jeremy K. .
NATURE PROTOCOLS, 2007, 2 (11) :2692-2703
[4]   Consensus meeting: monosodium glutamate - an update [J].
Beyreuther, K. ;
Biesalski, H. K. ;
Fernstrom, J. D. ;
Grimm, P. ;
Hammes, W. P. ;
Heinemann, U. ;
Kempski, O. ;
Stehle, P. ;
Steinhart, H. ;
Walker, R. .
EUROPEAN JOURNAL OF CLINICAL NUTRITION, 2007, 61 (03) :304-313
[5]   Monosodium Glutamate Dietary Consumption Decreases Pancreatic β-Cell Mass in Adult Wistar Rats [J].
Boonnate, Piyanard ;
Waraasawapati, Sakda ;
Hipkaeo, Wiphawi ;
Pethlert, Supattra ;
Sharma, Amod ;
Selmi, Carlo ;
Prasongwattana, Vitoon ;
Cha'on, Ubon .
PLOS ONE, 2015, 10 (06)
[6]   QIIME allows analysis of high-throughput community sequencing data [J].
Caporaso, J. Gregory ;
Kuczynski, Justin ;
Stombaugh, Jesse ;
Bittinger, Kyle ;
Bushman, Frederic D. ;
Costello, Elizabeth K. ;
Fierer, Noah ;
Pena, Antonio Gonzalez ;
Goodrich, Julia K. ;
Gordon, Jeffrey I. ;
Huttley, Gavin A. ;
Kelley, Scott T. ;
Knights, Dan ;
Koenig, Jeremy E. ;
Ley, Ruth E. ;
Lozupone, Catherine A. ;
McDonald, Daniel ;
Muegge, Brian D. ;
Pirrung, Meg ;
Reeder, Jens ;
Sevinsky, Joel R. ;
Tumbaugh, Peter J. ;
Walters, William A. ;
Widmann, Jeremy ;
Yatsunenko, Tanya ;
Zaneveld, Jesse ;
Knight, Rob .
NATURE METHODS, 2010, 7 (05) :335-336
[7]   MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis [J].
Chong, Jasmine ;
Soufan, Othman ;
Li, Carin ;
Caraus, Iurie ;
Li, Shuzhao ;
Bourque, Guillaume ;
Wishart, David S. ;
Xia, Jianguo .
NUCLEIC ACIDS RESEARCH, 2018, 46 (W1) :W486-W494
[8]   Statistical total correlation spectroscopy:: An exploratory approach for latent biomarker identification from metabolic 1H NMR data sets [J].
Cloarec, O ;
Dumas, ME ;
Craig, A ;
Barton, RH ;
Trygg, J ;
Hudson, J ;
Blancher, C ;
Gauguier, D ;
Lindon, JC ;
Holmes, E ;
Nicholson, J .
ANALYTICAL CHEMISTRY, 2005, 77 (05) :1282-1289
[9]   Diabetes is Associated with Higher Trimethylamine N-oxide Plasma Levels [J].
Dambrova, M. ;
Latkovskis, G. ;
Kuka, J. ;
Strele, I. ;
Konrade, I. ;
Grinberga, S. ;
Hartmane, D. ;
Pugovics, O. ;
Erglis, A. ;
Liepinsh, E. .
EXPERIMENTAL AND CLINICAL ENDOCRINOLOGY & DIABETES, 2016, 124 (04) :251-256
[10]   Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures.: Application in 1H NMR metabonomics [J].
Dieterle, Frank ;
Ross, Alfred ;
Schlotterbeck, Gotz ;
Senn, Hans .
ANALYTICAL CHEMISTRY, 2006, 78 (13) :4281-4290