Theoretical Insight into the Trends that Guide the Electrochemical Reduction of Carbon Dioxide to Formic Acid

被引:392
作者
Yoo, Jong Suk [1 ,2 ]
Christensen, Rune [3 ]
Vegge, Tejs [3 ]
Norskov, Jens K. [1 ,2 ]
Studt, Felix [1 ,2 ]
机构
[1] SLAC Natl Accelerator Lab, SUNCAT Ctr Interface Sci & Catalysis, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA
[2] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[3] Tech Univ Denmark, Dept Energy Convers & Storage, Fysikvej Bldg 309, DK-2800 Lyngby, Denmark
关键词
carbon dioxide; density functional calculations; heterogeneous catalysis; hydrogen evolution; transition metals; CO2; REDUCTION; AMMONIA-SYNTHESIS; HYDROGEN; ELECTRODES; CATALYSTS; METHANE; ELECTROREDUCTION; PERSPECTIVE; EFFICIENCY;
D O I
10.1002/cssc.201501197
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrochemical reduction (electroreduction) of CO2 to formic acid (HCOOH) and its competing reactions, that is, the electroreduction of CO2 to CO and the hydrogen evolution reaction (HER), on twenty-seven different metal surfaces have been investigated using density functional theory (DFT) calculations. Owing to a strong linear correlation between the free energies of COOH* and H*, it seems highly unlikely that the electroreduction of CO2 to HCOOH via the COOH* intermediate occurs without a large fraction of the current going to HER. On the other hand, the selective electroreduction of CO2 to HCOOH seems plausible if the reaction occurs via the HCOO* intermediate, as there is little correlation between the free energies of HCOO* and H*. Lead and silver surfaces are found to be the most promising monometallic catalysts showing high faradaic efficiencies for the electroreduction of CO2 to HCOOH with small overpotentials. Our methodology is widely applicable, not only to metal surfaces, but also to other classes of materials enabling the computational search for electrocatalysts for CO2 reduction to HCOOH.
引用
收藏
页码:358 / 363
页数:6
相关论文
共 60 条
[1]   Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces [J].
Abild-Pedersen, F. ;
Greeley, J. ;
Studt, F. ;
Rossmeisl, J. ;
Munter, T. R. ;
Moses, P. G. ;
Skulason, E. ;
Bligaard, T. ;
Norskov, J. K. .
PHYSICAL REVIEW LETTERS, 2007, 99 (01)
[2]  
[Anonymous], 2009, ANGEW CHEM, V121, P6732
[3]  
[Anonymous], 1995, Angew. Chem, V107, P2391
[4]  
[Anonymous], 2011, ANGEW CHEM, V123, P6535
[5]   An object-oriented scripting interface to a legacy electronic structure code [J].
Bahn, SR ;
Jacobsen, KW .
COMPUTING IN SCIENCE & ENGINEERING, 2002, 4 (03) :56-66
[6]   Efficient Subnanometric Gold-Catalyzed Hydrogen Generation via Formic Acid Decomposition under Ambient Conditions [J].
Bi, Qng-Yuan ;
Du, Xian-Long ;
Liu, Yong-Mei ;
Cao, Yong ;
He, He-Yong ;
Fan, Kang-Nian .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (21) :8926-8933
[7]   CO2-"Neutral" Hydrogen Storage Based on Bicarbonates and Formates [J].
Boddien, Albert ;
Gaertner, Felix ;
Federsel, Christopher ;
Sponholz, Peter ;
Mellmann, Doerthe ;
Jackstell, Ralf ;
Junge, Henrik ;
Beller, Matthias .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (28) :6411-6414
[8]   CATALYSIS Acidic ideas for hydrogen storage [J].
Boddien, Albert ;
Junge, Henrik .
NATURE NANOTECHNOLOGY, 2011, 6 (05) :265-266
[9]   Electrochemical Barriers Made Simple [J].
Chan, Karen ;
Norskov, Jens K. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (14) :2663-2668
[10]   Tin Oxide Dependence of the CO2 Reduction Efficiency on Tin Electrodes and Enhanced Activity for Tin/Tin Oxide Thin-Film Catalysts [J].
Chen, Yihong ;
Kanan, Matthew W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (04) :1986-1989