Surface potential and thin film quality of low work function metals on epitaxial graphene

被引:14
作者
DeJarld, Matthew [1 ]
Campbell, Paul M. [1 ]
Friedman, Adam L. [1 ,2 ]
Currie, Marc [1 ]
Myers-Ward, Rachael L. [1 ]
Boyd, Anthony K. [1 ]
Rosenberg, Samantha G. [1 ]
Pavunny, Shojan P. [1 ]
Daniels, Kevin M. [3 ]
Gaskill, D. K. [1 ]
机构
[1] US Naval Res Lab, Washington, DC 20375 USA
[2] Lab Phys Sci, College Pk, MD 20740 USA
[3] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
关键词
MODE-LOCKING; TRANSPORT; CONTACT; ELECTRONEGATIVITY; OXIDE; EUO;
D O I
10.1038/s41598-018-34595-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Metal films deposited on graphene are known to influence its electronic properties, but little is known about graphene's interactions with very low work function rare earth metals. Here we report on the work functions of a wide range of metals deposited on n-type epitaxial graphene (EG) as measured by Kelvin Probe Force Microscopy (KPFM). We compare the behaviors of rare earth metals (Pr, Eu, Er, Yb, and Y) with commonly used noble metals (Cr, Cu, Rh, Ni, Au, and Pt). The rare earth films oxidize rapidly, and exhibit unique behaviors when on graphene. We find that the measured work function of the low work function group is consistently higher than predicted, unlike the noble metals, which is likely due to rapid oxidation during measurement. Some of the low work function metals interact with graphene; for example, Eu exhibits bonding anomalies along the metal-graphene perimeter. We observe no correlation between metal work function and photovoltage, implying the metal-graphene interface properties are a more determinant factor. Yb emerges as the best choice for future applications requiring a low-work function electrical contact on graphene. Yb films have the strongest photovoltage response and maintains a relatively low surface roughness, similar to 5 nm, despite sensitivity to oxidation.
引用
收藏
页数:11
相关论文
共 66 条
[1]  
Apell S. P, 2012, ARXIV12013071
[2]   Electronic Cooling in Graphene [J].
Bistritzer, R. ;
MacDonald, A. H. .
PHYSICAL REVIEW LETTERS, 2009, 102 (20)
[3]   Europium Effect on the Electron Transport in Graphene Ribbons [J].
Bobadilla, Alfredo D. ;
Ocola, Leonidas E. ;
Sumant, Anirudha V. ;
Kaminski, Michael ;
Kumar, Narendra ;
Seminario, Jorge M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (39) :22486-22495
[4]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
[5]  
Cai X, 2014, NAT NANOTECHNOL, V9, P814, DOI [10.1038/nnano.2014.182, 10.1038/NNANO.2014.182]
[6]  
Chamberlain J. M, 2016, PHILOS T MATH PHYS E, V362, P199
[7]   Passive mode locking of ytterbium- and erbium-doped all-fiber lasers using graphene oxide saturable absorbers [J].
Chen, Hou-Ren ;
Tsai, Chih-Ya ;
Cheng, Hsin-Ming ;
Lin, Kuei-Huei ;
Hsieh, Wen-Feng .
OPTICS EXPRESS, 2014, 22 (11) :12880-12889
[8]   Rational design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer graphene [J].
Dai, Boya ;
Fu, Lei ;
Zou, Zhiyu ;
Wang, Min ;
Xu, Haitao ;
Wang, Sheng ;
Liu, Zhongfan .
NATURE COMMUNICATIONS, 2011, 2
[9]   Narrow plasmon resonances enabled by quasi-freestanding bilayer epitaxial graphene [J].
Daniels, Kevin M. ;
Jadidi, M. Mehdi ;
Sushkov, Andrei B. ;
Nath, Anindya ;
Boyd, Anthony K. ;
Sridhara, Karthik ;
Drew, H. Dennis ;
Murphy, Thomas E. ;
Myers-Ward, Rachael L. ;
Gaskill, D. Kurt .
2D MATERIALS, 2017, 4 (02)
[10]   Electronic transport in two-dimensional graphene [J].
Das Sarma, S. ;
Adam, Shaffique ;
Hwang, E. H. ;
Rossi, Enrico .
REVIEWS OF MODERN PHYSICS, 2011, 83 (02) :407-470