On the approximate solution of a mathematical model of a viscoelastic bar

被引:10
|
作者
Takaici, Djurdjica [1 ]
Takaci, Arpad [1 ]
机构
[1] Univ Novi Sad, Fac Sci, Dept Math & Informat, Novi Sad 21000, Serbia
关键词
viscoelastic bar; shock; Mikusitiski operators;
D O I
10.1016/j.na.2006.07.042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The mathematical model expressing the shock between a solid body and a linear viscoelastic bar is considered within the framework of the Mikusinski calculus. The existence of the solution of the corresponding problem in the field of Mikusinski operators is proved. Moreover, an approximate solution of the corresponding problem is constructed, and the error of approximation is estimated. (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1560 / 1569
页数:10
相关论文
共 50 条
  • [1] On the mathematical model of a viscoelastic bar
    Takaci, Arpad
    Takaci, Djurdjica
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2007, 30 (14) : 1685 - 1695
  • [2] Mathematical model for a shock problem involving a linear viscoelastic bar
    Bergounioux, M
    Long, NT
    Dinh, APN
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 43 (05) : 547 - 561
  • [3] Approximate solution for the nonlinear fractional order mathematical model
    Mahreen, Kahkashan
    Ain, Qura Tul
    Rahman, Gauhar
    Abdalla, Bahaaeldin
    Shah, Kamal
    Abdeljawad, Thabet
    AIMS MATHEMATICS, 2022, 7 (10): : 19267 - 19286
  • [4] Approximate model for a viscoelastic oscillator
    Ketema, Y., 1600, American Society of Mechanical Engineers (70):
  • [5] Approximate model for a viscoelastic oscillator
    Ketema, Y
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2003, 70 (05): : 757 - 761
  • [6] Stability of zero solution of mathematical model of multidimensional barotropic viscoelastic medium
    Orlov, VP
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (12) : 1937 - 1950
  • [7] Electron microscopy pictures, mathematical model and approximate solution of the surface potential
    Gagnadre, Claude
    Caron, Armand
    Guezenoc, Herve
    Grohens, Yves
    KYBERNETES, 2009, 38 (05) : 780 - 788
  • [8] A new nonlinear viscoelastic model and mathematical solution of solids for improving prediction accuracy
    Xu, Qinwu
    Engquist, Bjorn
    Solaimanian, Mansour
    Yan, Kezhen
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [9] A new nonlinear viscoelastic model and mathematical solution of solids for improving prediction accuracy
    Qinwu Xu
    Björn Engquist
    Mansour Solaimanian
    Kezhen Yan
    Scientific Reports, 10
  • [10] A Bus Driver Scheduling Problem: a new mathematical model and a GRASP approximate solution
    Renato De Leone
    Paola Festa
    Emilia Marchitto
    Journal of Heuristics, 2011, 17 : 441 - 466