Kernel estimates of nonparametric functional autoregression models and their bootstrap approximation

被引:17
作者
Zhu, Tingyi [1 ]
Politis, Dimitris N. [1 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
来源
ELECTRONIC JOURNAL OF STATISTICS | 2017年 / 11卷 / 02期
基金
美国国家科学基金会;
关键词
Functional time series; nonparametric autoregression; alpha-mixing; regression-type bootstrap; prediction region; REGRESSION ESTIMATION; PREDICTION; INFERENCE;
D O I
10.1214/17-EJS1303
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers a nonparametric functional autoregression model of order one. Existing contributions addressing the problem of functional time series prediction have focused on the linear model and literatures are rather lacking in the context of nonlinear functional time series. In our nonparametric setting, we define the functional version of kernel estimator for the autoregressive operator and develop its asymptotic theory under the assumption of a strong mixing condition on the sample. The results are general in the sense that high-order autoregression can be naturally written as a first-order AR model. In addition, a component-wise bootstrap procedure is proposed that can be used for estimating the distribution of the kernel estimation and its asymptotic validity is theoretically justified. The bootstrap procedure is implemented to construct prediction regions that achieve good coverage rate. A supporting simulation study is presented in the end to illustrate the theoretical advances in the paper.
引用
收藏
页码:2876 / 2906
页数:31
相关论文
共 33 条
[1]   Wavelet methods for continuous-time prediction using Hilbert-valued autoregressive processes [J].
Antoniadis, A ;
Sapatinas, T .
JOURNAL OF MULTIVARIATE ANALYSIS, 2003, 87 (01) :133-158
[2]   A functional wavelet-kernel approach for time series prediction [J].
Antoniadis, Anestis ;
Paparoditis, Efstathios ;
Sapatinas, Theofanis .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2006, 68 :837-857
[3]   On the Prediction of Stationary Functional Time Series [J].
Aue, Alexander ;
Norinho, Diogo Dubart ;
Hoermann, Siegfried .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (509) :378-392
[4]  
Bosq D., 2000, Lecture notes in statistics, DOI DOI 10.1007/978-1-4612-1154-9
[5]   General linear processes in Hilbert spaces and prediction [J].
Bosq, Denis .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (03) :879-894
[6]   Advances on asymptotic normality in non-parametric functional time series analysis [J].
Delsol, Laurent .
STATISTICS, 2009, 43 (01) :13-33
[7]   Empirical properties of forecasts with the functional autoregressive model [J].
Didericksen, Devin ;
Kokoszka, Piotr ;
Zhang, Xi .
COMPUTATIONAL STATISTICS, 2012, 27 (02) :285-298
[8]   Regression when both response and predictor are functions [J].
Ferraty, F. ;
Van Keilegom, I. ;
Vieu, P. .
JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 109 :10-28
[9]  
Ferraty F., 2006, SPR S STAT
[10]   Nonparametric regression on functional data: Inference and practical aspects [J].
Ferraty, Frederic ;
Mas, Andre ;
Vieu, Philippe .
AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2007, 49 (03) :267-286