Recovery of cathode materials from spent lithium-ion batteries using eutectic system of lithium compounds

被引:59
作者
Ji, Yi [1 ]
Jafvert, Chad T. [1 ,2 ]
Zhao, Fu [1 ,3 ]
机构
[1] Purdue Univ, Environm & Ecol Engn, W Lafayette, IN 47907 USA
[2] Purdue Univ, Civil Engn, W Lafayette, IN 47907 USA
[3] Purdue Univ, Mech Engn, 585 Purdue Mall, W Lafayette, IN 47907 USA
关键词
Lithium-ion battery; Cathode materials; Molten salt; Delamination; PVDF decomposition; THERMAL-STABILITY; WASTE; EXTRACTION; METALS; IMPACT; FOIL;
D O I
10.1016/j.resconrec.2021.105551
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The cathode material is the focus of end-of-life lithium-ion battery recycling due to its high value. Cathode-to-cathode direct recycling avoids the need to change the cathode material to other metal forms, which could have significant economic and environmental advantages. A process that separates the cathode layer from current collector and recovers the active cathode materials is highly desirable as this facilitates the following regeneration step. In the present work, eutectic mixtures of lithium compounds are studies as an efficient and environmentally friendly approach for the separation and recovery of active cathode materials. Three commonly used inorganic lithium compounds i.e. LiCl, LiNO3, and LiOH, and their binary eutectic systems are investigated. It is found that LiOH-LiNO3 eutectic system has the highest peel-off efficiency. At temperature of 260 degrees C with 30 min holding time and salts/cathode electrode mass ratio of 10:1, up to 98.3% of cathode active materials can be recovered. The recovered cathode materials show minimal change and destruction on chemical composition, crystal structure, and morphology. Results suggest that LiOH-LiNO3 eutectic system can facilitate the decomposition of polyvinylidene fluoride binder and capture the HF released. The process based on eutectic systems of lithium compounds provides an alternative binder removal approach to organic solvents, and offers re-lithiation benefit without introducing impurities. It has the potential to promote direct recycling and sustainable recycling of spent lithium-ion batteries.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Recovery of cathode materials and Al from spent lithium-ion batteries by cleaning
    He, Li-Po
    Sun, Shu-Ying
    Song, Xing-Fu
    Yu, Jian-Guo
    WASTE MANAGEMENT, 2015, 46 : 523 - 528
  • [2] Recovery of Lithium from Black Cathode Active Materials of Discarded Lithium-Ion Batteries
    Choubey, Pankaj Kumar
    Parween, Rukshana
    Panda, Rekha
    Dinkar, Om Shankar
    Jha, Manis Kumar
    REWAS 2022: DEVELOPING TOMORROW'S TECHNICAL CYCLES, VOL I, 2022, : 739 - 745
  • [3] Recovery and Separation of Valuable Metals from Cathode Materials of Spent Lithium-Ion Batteries (LIBs) by Ion Exchange
    Chiu, Kai-Lun
    Chen, Wei-Sheng
    SCIENCE OF ADVANCED MATERIALS, 2017, 9 (12) : 2155 - 2160
  • [4] Selective Recovery of Lithium from Spent Lithium-Ion Batteries
    Zhu, Guohui
    Huan, Hongxian
    Yu, Dawei
    Guo, Xueyi
    Tian, Qinghua
    PROGRESS IN CHEMISTRY, 2023, 35 (02) : 287 - 301
  • [5] Recovery of active cathode materials from lithium-ion batteries using froth flotation
    Zhan, Ruiting
    Oldenburg, Zachary
    Pan, Lei
    SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2018, 17
  • [6] Comprehensive recovery of NCM cathode materials for spent lithium-ion batteries by microfluidic device
    Zhou, Yiwei
    Chen, Zhuo
    Chen, An
    Zhang, Jingwei
    Wu, Xingjiang
    Xu, Jianhong
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 294
  • [7] Recent recycling methods for spent cathode materials from lithium-ion batteries: A review
    Dhanabalan, Karmegam
    Aruchamy, Kanakaraj
    Sriram, Ganesan
    Sadhasivam, Thangarasu
    Oh, Tae Hwan
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2024, 139 : 111 - 124
  • [8] Comprehensive recovery of NCM cathode materials for spent lithium-ion batteries by microfluidic device
    Zhou, Yiwei
    Chen, Zhuo
    Chen, An
    Zhang, Jingwei
    Wu, Xingjiang
    Xu, Jianhong
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 294
  • [9] Separation and Efficient Recovery of Lithium from Spent Lithium-Ion Batteries
    Gerold, Eva
    Luidold, Stefan
    Antrekowitsch, Helmut
    METALS, 2021, 11 (07)
  • [10] Innovative Electrochemical Strategy to Recovery of Cathode and Efficient Lithium Leaching from Spent Lithium-Ion Batteries
    Liu, Kui
    Yang, Shenglong
    Lai, Feiyan
    Wang, Hongqiang
    Huang, Youguo
    Zheng, Fenghua
    Wang, Shubin
    Zhang, Xiaohui
    Li, Qingyu
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (05): : 4767 - 4776