Cusped solitons of the Camassa-Holm equation. I. Cuspon solitary wave and antipeakon limit

被引:10
作者
Parker, A. [1 ]
机构
[1] Newcastle Univ, Sch Mech & Syst Engn, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
关键词
D O I
10.1016/j.chaos.2007.01.033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A factorisaton method is used to obtain the cusped soliton of the Camassa-Holm equation in parametric form. It is shown how this piecewise analytic solution arises from an associated smooth solitary wave. The PQ-decomposition of the explicit solution is then used to determine the dispersionless limit (K -> 0) in which the cuspon converges to an anti-peakon. The special cuspon solution reported by Kraenkel and Zenchuk [Kraenkel RA, Zenchuk A. Camassa-Holm equation: transformation to deformed sinh-Gordon equations, cuspon and soliton solutions. J Phys A: Math Gen 1999;32:4733-47] is recovered and examined in the context of the parametric representation. The cusped solitary wave of a short-wave version of the Camassa-Holm model is also deduced from the cuspon in an appropriate limit. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:730 / 739
页数:10
相关论文
共 22 条
[1]  
[Anonymous], 1997, DISCRETE CONT DYN-A, DOI 10.3934/dcds.1997.3.419
[2]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[3]  
Camassa R., 1994, Adv. Appl. Mech., V31, P1, DOI DOI 10.1016/S0065-2156(08)70254-0
[4]   The interaction of the ω-soflton and ω-cuspon of the Camassa-Holm equation [J].
Dai, HH ;
Li, YS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (42) :L685-L694
[5]   Soliton-cuspon interaction for the Camassa-Holm equation [J].
Ferreira, MC ;
Kraenkel, RA ;
Zenchuk, AI .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (49) :8665-8670
[6]   A SURVEY OF THE ORIGINS AND PHYSICAL IMPORTANCE OF SOLITON-EQUATIONS [J].
GIBBON, JD .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1985, 315 (1533) :335-365
[7]  
Hirota R., 1980, Solitons, P157, DOI 10.1007/978-3-642-81448-8_5
[8]   On solutions of the Camassa-Holm equation [J].
Johnson, RS .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 459 (2035) :1687-1708
[9]   Camassa-Holm equation: transformation to deformed sinh-Gordon equations, cuspon and soliton solutions [J].
Kraenkel, RA ;
Zenchuk, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (25) :4733-4747
[10]  
Li YS, 2005, J NONLINEAR MATH PHY, V12, P466