On the global stable manifold

被引:8
作者
Abbondandolo, Alberto [1 ]
Majer, Pietro [1 ]
机构
[1] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
关键词
stable manifold theorem; Banach manifold; hyperbolic fixed point; attractor;
D O I
10.4064/sm177-2-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an alternative proof of the stable manifold theorem as an application of the (right and left) inverse mapping theorem on a space of sequences. We investigate the diffeomorphism class of the global stable manifold, a problem which in the general Banach setting gives rise to subtle questions about the possibility of extending germs of diffeomorphisms.
引用
收藏
页码:113 / 131
页数:19
相关论文
共 12 条
[1]  
Abbondandolo A, 2006, NATO SCI SER II-MATH, V217, P1
[2]   Extension of smooth functions in infinite dimensions, I: unions of convex sets [J].
Atkin, CJ .
STUDIA MATHEMATICA, 2001, 146 (03) :201-226
[3]   The parameterization method for invariant manifolds II: Regularity with respect to parameters [J].
Cabre, X ;
Fontich, E ;
De la Llave, R .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2003, 52 (02) :329-360
[4]   The parameterization method for invariant manifolds I:: Manifolds associated to non-resonant subspaces [J].
Cabré, X ;
Fontich, E ;
De la Llave, R .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2003, 52 (02) :283-328
[5]  
FATHI A, 1983, GEOMETRIC DYNAMICS, P177
[6]  
Hirsch MW., 1977, LECT NOTES MATH, DOI 10.1007/BFb0092042
[7]  
IRWIN MC, 1980, J LOND MATH SOC, V21, P557
[8]  
Irwin MC., 1970, B LOND MATH SOC, V2, P196
[9]  
Lang S., 1999, Grad. Texts in Math., DOI [10.1007/978-1-4612-0541-8, DOI 10.1007/978-1-4612-0541-8]
[10]  
Shub M., 1987, GLOBAL STABILITY DYN, DOI DOI 10.1007/978-1-4757-1947-5