On orbital regular graphs and frobenius graphs

被引:18
作者
Fang, XG [1 ]
Li, CH [1 ]
Praeger, CE [1 ]
机构
[1] Univ Western Australia, Dept Math, Perth, WA 6907, Australia
基金
澳大利亚研究理事会;
关键词
D O I
10.1016/S0012-365X(97)00148-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is called a Frobenius graph if it is a connected orbital graph of a Frobenius group. In this paper, we show first that almost all orbital regular graphs are Frobenius graphs. Then we give a description of Frobenius graphs in terms of a family of (usually smaller) Frobenius graphs which are Cayley graphs for elementary abelian groups. Finally, based on this description, we obtain a formula for calculating the edge-forwarding index of Frobenius graphs.
引用
收藏
页码:85 / 99
页数:15
相关论文
共 13 条
[1]  
[Anonymous], 1983, ARS COMBINATORIA
[2]  
Biggs N., 1974, ALGEBRAIC GRAPH THEO
[3]  
BROUWER AE, 1990, DISTANCE REGULAR GRA
[4]   Isomorphism problem for Cayley graphs of Z(p)(3) [J].
Dobson, E .
DISCRETE MATHEMATICS, 1995, 147 (1-3) :87-94
[5]  
Gorenstein D., 1980, Finite groups, V2
[6]   ON FORWARDING INDEXES OF NETWORKS [J].
HEYDEMANN, MC ;
MEYER, JC ;
SOTTEAU, D .
DISCRETE APPLIED MATHEMATICS, 1989, 23 (02) :103-123
[7]  
Huppert B., 1967, Endliche Gruppen I, VI
[8]  
Li CH, 1998, DISCRETE MATH, V178, P109
[9]  
SCOTT WR, 1964, GROUP THEORY
[10]   THE EDGE-FORWARDING INDEX OF ORBITAL REGULAR GRAPHS [J].
SOLE, P .
DISCRETE MATHEMATICS, 1994, 130 (1-3) :171-176