Norm attaining multilinear forms and polynomials on preduals of Lorentz sequence spaces

被引:0
|
作者
Sevilla, MJ [1 ]
Paya, R
机构
[1] Univ Complutense Madrid, Fac Ciencias Matemat, Dept Anal Matemat, E-28040 Madrid, Spain
[2] Univ Granada, Fac Ciencias, Dept Anal Matemat, E-18071 Granada, Spain
关键词
norm attaining multilinear forms and polynomials; weakly continuous multilinear forms and polynomials; Lorentz sequence spaces;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For each natural number N, we give an example of a Banach space X such that the set of norm attaining N-linear forms is dense in the space of all continuous N-linear forms on X, but there are continuous (N + 1)-linear forms on X which cannot be approximated by norm attaining (N + 1)-linear forms. Actually, X is the canonical predual of a suitable Lorentz sequence space. We also get the analogous-result for homogeneous polynomials.
引用
收藏
页码:99 / 112
页数:14
相关论文
共 50 条
  • [1] Extensions of polynomials on preduals of Lorentz sequence spaces
    Choi, Yun Sung
    Han, Kwang Hee
    Song, Hyun Gwi
    GLASGOW MATHEMATICAL JOURNAL, 2005, 47 : 395 - 403
  • [2] Norm-attaining operators into Lorentz sequence spaces
    Acosta, Maria D.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2009, 139 : 225 - 235
  • [3] Norm or numerical radius attaining multilinear mappings and polynomials
    Choi, YS
    Kim, SG
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 54 : 135 - 147
  • [4] Norm attaining multilinear forms on the spaces c0 or l1
    Kim, Sung Guen
    CONSTRUCTIVE MATHEMATICAL ANALYSIS, 2022, 5 (01): : 1 - 6
  • [5] Interpolation by analytic functions on preduals of Lorentz sequence spaces
    Lourenco, M. L.
    Pellegrini, L.
    GLASGOW MATHEMATICAL JOURNAL, 2006, 48 : 483 - 490
  • [6] New sufficient conditions for the denseness of norm attaining multilinear forms
    Payá, R
    Saleh, Y
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2002, 34 : 212 - 218
  • [7] Norm-attaining operators between Marcinkiewicz and Lorentz spaces
    Acosta, Maria D.
    Kaminska, Anna
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2008, 40 : 581 - 592
  • [8] Norm attaining polynomials
    Pappas, A.
    Sarantopoulos, Y.
    Tonge, A.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2007, 39 : 255 - 264
  • [9] Coefficients of Multilinear Forms on Sequence Spaces
    Anselmo Raposo
    Diana M. Serrano-Rodríguez
    Bulletin of the Brazilian Mathematical Society, New Series, 2023, 54
  • [10] Coefficients of Multilinear Forms on Sequence Spaces
    Raposo Jr, Anselmo
    Serrano-Rodriguez, Diana M.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2023, 54 (03):