Detrimental phase evolution triggered by Ni in perovskite-type cathodes for CO2 electroreduction

被引:40
作者
Hu, Shiqing [1 ,2 ]
Zhang, Lixiao [1 ,2 ]
Liu, Huanying [1 ]
Li, Wenping [1 ]
Cao, Zhongwei [1 ]
Cai, Lili [1 ,2 ]
Zhu, Yue [1 ,2 ]
Zhu, Xuefeng [1 ]
Yang, Weishen [1 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Liaoning, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2019年 / 36卷
基金
中国国家自然科学基金;
关键词
Carbon dioxide electroreduction; Perovskite oxide; Phase stability; Solid oxide electrolysis cell; OXIDE ELECTROLYSIS CELLS; INTERMEDIATE TEMPERATURE CO2; CARBON-DIOXIDE; FUEL ELECTRODE; PURE CO2; EFFICIENT ELECTROLYSIS; MEMBRANE REACTOR; ANODE MATERIALS; NANOPARTICLES; REDUCTION;
D O I
10.1016/j.jechem.2019.06.001
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Perovskite oxides are popular as cathode materials of solid oxide electrolysis cells, because of their good redox stability and high resistance to coke formation. Unexpectedly, a negative effect of Ni doping is found on Sr2Fe1.5-xNixMo0.5O (x =0, 0.05, 0.1, 0.2) cathode for pure CO2 electroreduction at 800 degrees C, although Ni is highly active for CO2 electroreduction. The CO2 electroreduction performance degrades with the increase of Ni doping amount. Various characterization techniques are used to disclose the negative effect. Ni doping decreases the perovskite stability under electroreduction conditions, Fe and Ni cations in the B-site are reduced to metal nanoparticles and SrCO3 forms on the surface of the perovskite. The phase instability results from the weaker Ni-O bond. Although the Fe-Ni nanoparticles are in favor of the CO2 electroreduction, too much SrCO3 and carbon deposition block the charge transfer and diffusion of oxygenous species on the cathode surface. (C) 2019 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
引用
收藏
页码:87 / 94
页数:8
相关论文
共 60 条
[1]   Dual-phase membrane reactor for hydrogen separation with high tolerance to CO2 and H2S impurities [J].
Cai, Lili ;
Hu, Shiqing ;
Cao, Zhongwei ;
Li, Hongbo ;
Zhu, Xuefeng ;
Yang, Weishen .
AICHE JOURNAL, 2019, 65 (03) :1088-1096
[2]   Improving oxygen permeation of MIEC membrane reactor by enhancing the electronic conductivity under intermediate-low oxygen partial pressures [J].
Cai, Lili ;
Li, Wenping ;
Cao, Zhongwei ;
Zhu, Xuefeng ;
Yang, Weishen .
JOURNAL OF MEMBRANE SCIENCE, 2016, 520 :607-615
[3]   Efficient electrolysis of CO2 in symmetrical solid oxide electrolysis cell with highly active La0.3Sr0.7Fe0.7Ti0.3O3 electrode material [J].
Cao, Zhiqun ;
Wei, Bo ;
Miao, Jipeng ;
Wang, Zhihong ;
Lu, Zhe ;
Li, Wenyuan ;
Zhang, Yaohui ;
Huang, Xiqiang ;
Zhu, Xingbao ;
Feng, Qi ;
Sui, Yu .
ELECTROCHEMISTRY COMMUNICATIONS, 2016, 69 :80-83
[4]   Synthesis and characterization of B-site Ni-doped perovskites Sr2Fe1.5-xNixMo0.5O6-δ (x=0, 0.05, 0.1, 0.2, 0.4) as cathodes for SOFCs [J].
Dai, Ningning ;
Feng, Jie ;
Wang, Zhenhua ;
Jiang, Taizhi ;
Sun, Wang ;
Qiao, Jinshuo ;
Sun, Kening .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (45) :14147-14153
[5]   Influence of microstructure on oxygen transport in perovskite type membranes [J].
Diethelm, S ;
van Herle, J ;
Sfeir, J ;
Buffat, P .
BRITISH CERAMIC TRANSACTIONS, 2004, 103 (04) :147-152
[6]   Hierarchically ordered porous Ni-based cathode-supported solid oxide electrolysis cells for stable CO2 electrolysis without safe gas [J].
Dong, Dehua ;
Xu, Shanshan ;
Shao, Xin ;
Hucker, Leigh ;
Marin, Justin ;
Thang Pham ;
Xie, Kui ;
Ye, Zhengmao ;
Yang, Ping ;
Yu, Libo ;
Parkinson, Gordon ;
Li, Chun-Zhu .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (46) :24098-24102
[7]   High Temperature Electrolysis in Alkaline Cells, Solid Proton Conducting Cells, and Solid Oxide Cells [J].
Ebbesen, Sune Dalgaard ;
Jensen, Soren Hojgaard ;
Hauch, Anne ;
Mogensen, Mogens Bjerg .
CHEMICAL REVIEWS, 2014, 114 (21) :10697-10734
[8]   Improved performance and stability of Ag-infiltrated nanocomposite La0.6Sr0.4Co0.2Fe0.8O3-δ-(Y2O3)0.08(ZrO2)0.92 oxygen electrode for H2O/CO2 co-electrolysis [J].
Fan, Hui ;
Han, Minfang .
JOURNAL OF POWER SOURCES, 2016, 336 :179-185
[9]   Life cycle analysis of a combined CO2 capture and conversion membrane reactor [J].
Fang, Jie ;
Jin, Xinfang ;
Huang, Kevin .
JOURNAL OF MEMBRANE SCIENCE, 2018, 549 :142-150
[10]   Power-to-Syngas: An Enabling Technology for the Transition of the Energy System? [J].
Foit, Severin R. ;
Vinke, Izaak C. ;
de Haart, Lambertus G. J. ;
Eichel, Ruediger-A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (20) :5402-5411