R-factorizable paratopological groups

被引:17
|
作者
Sanchis, Manuel [2 ]
Tkachenko, Mikhail [1 ]
机构
[1] Univ Autonoma Metropolitana, Dept Matemat, Mexico City 09340, DF, Mexico
[2] Univ Jaume 1, Dept Matemat, Castellon de La Plana, Spain
关键词
R-factorizable; Totally omega-narrow; Lindelof; Realcompact; Network; omega-Cellular; z-Embedded; CONTINUITY; INVERSE; SPACES;
D O I
10.1016/j.topol.2009.08.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For i = 1, 2. 3, 3.5, we define the class of R-i-factorizable paratopological groups G by the condition that every continuous real-valued function on G can be factorized through a continuous homomorphism p : G -> H onto a second countable paratopological group H satisfying the T-i-separation axiom. We show that the Sorgenfrey line is a Lindelof paratopological group that fails to be R-1-factorizable. However, every Lindelof totally omega-narrow regular (Hausdorff) paratopological group is R-3-factorizable (resp. R-2-factorizable). We also prove that a Lindelof totally omega-narrow, regular paratopological group is topologically isomorphic to a closed subgroup of a product of separable metrizable paratopological groups. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:800 / 808
页数:9
相关论文
共 50 条