Modeling and measurement of hydrogen radical densities of in situ plasma-based Sn cleaning source

被引:10
|
作者
Elg, Daniel T. [1 ,3 ]
Panici, Gianluca A. [1 ]
Peck, Jason A. [1 ]
Srivastava, Shailendra N. [2 ,4 ]
Ruzic, David N. [1 ]
机构
[1] Univ Illinois, Ctr Plasma Mat Interact, Dept Nucl Plasma & Radiol Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Appl Res Inst, Champaign, IL USA
[3] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[4] Appl Mat Inc, Santa Clara, CA 95054 USA
来源
JOURNAL OF MICRO-NANOLITHOGRAPHY MEMS AND MOEMS | 2017年 / 16卷 / 02期
基金
美国国家科学基金会;
关键词
extreme ultraviolet; collector; cleaning; in situ; plasma; hydrogen; debris; DEBRIS CHARACTERIZATION; ATOMS;
D O I
10.1117/1.JMM.16.2.023501
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Extreme ultraviolet (EUV) lithography sources expel Sn debris. This debris deposits on the collector optic used to focus the EUV light, lowering its reflectivity and EUV throughput to the wafer. Consequently, the collector must be cleaned, causing source downtime. To solve this, a hydrogen plasma source was developed to clean the collector in situ by using the collector as an antenna to create a hydrogen plasma and create H radicals, which etch Sn as SnH4. This technique has been shown to remove Sn from a 300-mm-diameter stainless steel dummy collector. The H radical density is of key importance in Sn etching. The effects of power, pressure, and flow on radical density are explored. A catalytic probe has been used to measure radical density, and a zero-dimensional model is used to provide the fundamental science behind radical creation and predict radical densities. Model predictions and experimental measurements are in good agreement. The trends observed in radical density, contrasted with measured Sn removal rates, show that radical density is not the limiting factor in this etching system; other factors, such as SnH4 redeposition and energetic ion bombardment, must be more fully understood in order to predict removal rates. (C) 2017 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:9
相关论文
共 28 条
  • [1] Collector Optic Cleaning by In-Situ Hydrogen Plasma
    Elg, Daniel T.
    Panici, Gianluca A.
    Srivastava, Shailendra N.
    Ruzic, D. N.
    EXTREME ULTRAVIOLET (EUV) LITHOGRAPHY VI, 2015, 9422
  • [2] Study of Sn Removal by Surface Wave Plasma for Source Cleaning
    Panici, Gianluca
    Qerimi, Dren
    Ruzic, David N.
    EXTREME ULTRAVIOLET (EUV) LITHOGRAPHY VIII, 2017, 10143
  • [3] In-Situ Sn Contamination Removal by Hydrogen Plasma
    Sporre, J.
    Elg, D.
    Andruczyk, D.
    Cho, T.
    Ruzic, D. N.
    Srivastava, S. N.
    Brandt, D. C.
    EXTREME ULTRAVIOLET (EUV) LITHOGRAPHY III, 2012, 8322
  • [4] Collector Optic In-Situ Sn Removal Using Hydrogen Plasma
    Sporre, John R.
    Elg, Dan
    Ruzic, David N.
    Srivastava, Shailendra N.
    Fomenkov, Igor V.
    Brandt, David C.
    EXTREME ULTRAVIOLET (EUV) LITHOGRAPHY IV, 2013, 8679
  • [5] Sn debris cleaning by plasma in DPP EUV source systems for HVM
    Shin, H.
    Surla, V.
    Neumann, M. J.
    Ruzic, D. N.
    EXTREME ULTRAVIOLET (EUV) LITHOGRAPHY, 2010, 7636
  • [6] Hydrogen Plasma-Based Medium Pressure Chemical Ionization Source for GC-TOFMS
    Braekling, Steffen
    Kroll, Kai
    Klee, Sonja
    Benter, Thorsten
    Kersten, Hendrik
    JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2022, 33 (03) : 499 - 509
  • [7] Plasma Sn cleaning integrated in EUV source system - art. no. 692132
    Shin, H.
    Raju, R.
    Ruzie, D. N.
    EMERGING LITHOGRAPHIC TECHNOLOGIES XII, PTS 1 AND 2, 2008, 6921 : 92132 - 92132
  • [8] Plasma-Based Indoor Air Cleaning Technologies: The State of the Art-Review
    Bahri, Mitra
    Haghighat, Fariborz
    CLEAN-SOIL AIR WATER, 2014, 42 (12) : 1667 - 1680
  • [9] Miniature plasma source for in situ extreme ultraviolet lithographic scanner cleaning
    van de Kerkhof, Mark
    Osorio, Edgar
    Krivtsun, Vladimir
    Spiridonov, Maxim
    Astakhov, Dmitry
    Medvedev, Viacheslav
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2022, 40 (02):
  • [10] Techno-Economic Pre-feasibility Study of a Hydrogen Plasma-Based Ferromanganese Plant
    Dalaker, Halvor
    Eldrup, Nils
    Jensen, Roar
    Kvande, Rannveig
    REWAS 2022: DEVELOPING TOMORROW'S TECHNICAL CYCLES, VOL I, 2022, : 647 - 658