Metallic molybdenum sulfide nanodots as platinum-alternative co-catalysts for photocatalytic hydrogen evolution

被引:43
作者
Xu, Xiaoyong [1 ,2 ]
Pan, Lou [1 ]
Han, Qiutong [3 ]
Wang, Chengzhong [1 ]
Ding, Peng [1 ]
Pan, Jing [1 ]
Hu, Jingguo [1 ]
Zeng, Haibo [2 ]
Zhou, Yong [3 ]
机构
[1] Yangzhou Univ, Coll Phys Sci & Technol, Yangzhou 225002, Jiangsu, Peoples R China
[2] Nanjing Univ Sci & Technol, Coll Mat Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
[3] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Photocatalysis; 1T-phase MoS2; Nanodots; Solar hydrogen production; MOS2 ULTRATHIN NANOSHEETS; H-2; EVOLUTION; CATALYTIC-ACTIVITY; PHASE-TRANSITION; ACTIVE-SITES; WATER; OPTIMIZATION; PERFORMANCE;
D O I
10.1016/j.jcat.2019.04.043
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molybdenum sulfide (MoS2) has attracted considerable attention as one of noble-metal-free co-catalysts of hydrogen evolution reaction (HER) for artificial photosynthetic water splitting. There are well-known challenges in optimizing its catalytic activity to pursue the replacement of platinum (Pt) for HER, owing to the edge-limited active sites and intrinsically poor conductivity. Herein, we prepared metallic MoS2 nanodots (MNDs) with 1T-phase occupation and edge-exposure maximum to achieve the simultaneous optimization of electric conductivity and active sites. When integrated as co-catalysts with graphitic carbon nitride (g-CN) for sunlight-driven HER in alkaline electrolyte, the outstanding photocatalytic activity with hydrogen evolution rate of 5.62 mmol g(-1) h(-1), over 280 times higher than that of pure g-CN, demonstrates the excellent co-catalytic performance of 1T-MoS2 NDs (1T-MNDs) that even comparable to state-of-the-art Pt. The photo-induced charge dynamics describe the role of 1T-MNDs in facilitating charge separation as well as surface catalytic reaction, suggesting a promising potential of 1T-MNDs with more active sites and higher conductivity as Pt-alternative co-catalysts for solar hydrogen production. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:237 / 245
页数:9
相关论文
共 44 条
[1]   Chemically exfoliated metallic MoS2 nanosheets: A promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals [J].
Bai, Song ;
Wang, Limin ;
Chen, Xiaoyi ;
Du, Junteng ;
Xiong, Yujie .
NANO RESEARCH, 2015, 8 (01) :175-183
[2]   Targeted Synthesis of 2H-and 1T-Phase MoS2 Monolayers for Catalytic Hydrogen Evolution [J].
Chang, Kun ;
Hai, Xiao ;
Pang, Hong ;
Zhang, Huabin ;
Shi, Li ;
Liu, Guigao ;
Liu, Huimin ;
Zhao, Guixia ;
Li, Mu ;
Ye, Jinhua .
ADVANCED MATERIALS, 2016, 28 (45) :10033-10041
[3]   Transition Metal Disulfides as Noble-Metal-Alternative Co-Catalysts for Solar Hydrogen Production [J].
Chang, Kun ;
Hai, Xiao ;
Ye, Jinhua .
ADVANCED ENERGY MATERIALS, 2016, 6 (10)
[4]   Drastic Layer-Number-Dependent Activity Enhancement in Photocatalytic H2 Evolution over nMoS2/CdS (n 1) Under Visible Light [J].
Chang, Kun ;
Li, Mu ;
Wang, Tao ;
Ouyang, Shuxin ;
Li, Peng ;
Liu, Lequan ;
Ye, Jinhua .
ADVANCED ENERGY MATERIALS, 2015, 5 (10)
[5]   MoS2/Graphene Cocatalyst for Efficient Photocatalytic H2 Evolution under Visible Light Irradiation [J].
Chang, Kun ;
Mei, Zongwei ;
Wang, Tao ;
Kang, Qing ;
Ouyang, Shuxin ;
Ye, Jinhua .
ACS NANO, 2014, 8 (07) :7078-7087
[6]   Edge Epitaxy of Two-Dimensional MoSe2 and MoS2 Nanosheets on One-Dimensional Nanowires [J].
Chen, Junze ;
Wu, Xue-Jun ;
Gong, Yue ;
Zhu, Yihan ;
Yang, Zhenzhong ;
Li, Bing ;
Lu, Qipeng ;
Yu, Yifu ;
Han, Shikui ;
Zhang, Zhicheng ;
Zong, Yun ;
Han, Yu ;
Gu, Lin ;
Zhang, Hua .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (25) :8653-8660
[7]   Synergetic effect of MoS2 and MXene on the enhanced H2 evolution performance of CdS under visible light irradiation [J].
Chen, Ran ;
Wang, Peifang ;
Chen, Juan ;
Wang, Chao ;
Ao, Yanhui .
APPLIED SURFACE SCIENCE, 2019, 473 :11-19
[8]  
Chhowalla M, 2013, NAT CHEM, V5, P263, DOI [10.1038/NCHEM.1589, 10.1038/nchem.1589]
[9]   A photochemical diode artificial photosynthesis system for unassisted high efficiency overall pure water splitting [J].
Chowdhury, Faqrul A. ;
Trudeau, Michel L. ;
Guo, Hong ;
Mi, Zetian .
NATURE COMMUNICATIONS, 2018, 9
[10]   Photoluminescence from Chemically Exfoliated MoS2 [J].
Eda, Goki ;
Yamaguchi, Hisato ;
Voiry, Damien ;
Fujita, Takeshi ;
Chen, Mingwei ;
Chhowalla, Manish .
NANO LETTERS, 2011, 11 (12) :5111-5116