Existence of invariant norms in p-adic representations of GL2(F) of large weights

被引:1
作者
Assaf, Eran [1 ]
机构
[1] Dartmouth Coll, Hanover, NH 03755 USA
基金
英国工程与自然科学研究理事会;
关键词
p-Adic local Langlands; p-Adic representations; Invariant norms; Integral structures; Locally algebraic representations; MODULAR-REPRESENTATIONS; DISTRIBUTIONS;
D O I
10.1016/j.jnt.2021.01.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a finite extension of Q(p) and let q be the cardinality of its residue field. The Breuil-Schneider conjecture for G = GL(n)(F)[BS07] gives a necessary and sufficient condition for the existence of an invariant norm on rho circle times pi, where rho is an irreducible algebraic representation of G and pi is an irreducible smooth representation of G over (F) over bar. The conjecture is still open, even when n = 2, if pi is a principal series representation. In this case, assuming pi is unramified and rho = Sym(k) circle times det(m), it had been verified by Breuil [Bre03b] and De Ieso [DI13] when k < q. We extend their work to the range k < q(2)/2, imposing some technical conditions on pi. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:95 / 141
页数:47
相关论文
共 21 条
  • [1] IRREDUCIBLE MODULAR-REPRESENTATIONS OF GL2 OF A LOCAL-FIELD
    BARTHEL, L
    LIVNE, R
    [J]. DUKE MATHEMATICAL JOURNAL, 1994, 75 (02) : 261 - 292
  • [2] On some modular representations and p-adics of GL2(Qp):: I
    Breuil, C
    [J]. COMPOSITIO MATHEMATICA, 2003, 138 (02) : 165 - 188
  • [3] First steps towards p-adic Langlands functoriality
    Breuil, Christophe
    Schneider, Peter
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 610 : 149 - 180
  • [4] SUR QUELQUES REPRESENTATIONS MODULAIRES ET p-ADIQUES DE GL2(Qp). II
    Breuil, Christophe
    [J]. JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2003, 2 (01) : 23 - 58
  • [5] Patching and the p-adic local Langlands correspondence
    Caraiani, Ana
    Emerton, Matthew
    Gee, Toby
    Geraghty, David
    Paskunas, Vytautas
    Shin, Sug Woo
    [J]. CAMBRIDGE JOURNAL OF MATHEMATICS, 2016, 4 (02) : 197 - 287
  • [6] Construction of semi-stable p-adic representations
    Colmez, P
    Fontaine, JM
    [J]. INVENTIONES MATHEMATICAE, 2000, 140 (01) : 1 - 43
  • [7] Colmez P, 2014, CAMB J MATH, V2, P1
  • [8] Colmez Pierre, 2010, ASTERISQUE
  • [9] Existence of GL2 invariant norms
    De Ieso, Marco
    [J]. JOURNAL OF NUMBER THEORY, 2013, 133 (08) : 2729 - 2755
  • [10] Emerton M, 2005, DUKE MATH J, V130, P353