Self-similar propagation and asymptotic optical waves in nonlinear waveguides

被引:11
作者
He, Jun-Rong [1 ]
Yi, Lin [1 ]
Li, Hua-Mei [2 ]
机构
[1] Huazhong Univ Sci & Technol, Dept Phys, Wuhan 430074, Peoples R China
[2] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Zhejiang, Peoples R China
来源
PHYSICAL REVIEW E | 2014年 / 90卷 / 01期
基金
中国国家自然科学基金;
关键词
SCHRODINGER-EQUATION; PARABOLIC PULSES; SOLITON PROPAGATION; DISPERSION REGION; SPATIAL SOLITONS; AMPLIFICATION; FIBER; BISTABILITY; COMPRESSION; GENERATION;
D O I
10.1103/PhysRevE.90.013202
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The properties of self-similar optical waves propagating in a tapered cubic-quintic nonlinear waveguide are investigated. Using a lens-type transformation we obtain the exact analytical self-similar solutions which describe the propagation of bright-shaped solitons, dark-shaped solitons, kink-shaped solitons, and antikink-shaped solitons. The stability of the solutions is examined by numerical simulations such that stable bright solitons are found. Beyond the exact analytical solutions, asymptotic optical waves are also found by employing a direct ansatz. These waves possess linear chirps and can propagate self-similarly. The possibility of controlling the shape of output asymptotic optical waves is demonstrated. The analytical results are confirmed by numerical simulations. Finally, we investigate the generation and propagation properties of self-similar optical waves in a quintic nonlinear medium.
引用
收藏
页数:9
相关论文
共 62 条
[1]   Collapse of solitary waves near the transition from supercritical to subcritical bifurcations [J].
Agafontsev, D. S. ;
Dias, F. ;
Kuznetsov, E. A. .
JETP LETTERS, 2008, 87 (12) :667-671
[2]   OBSERVATION OF FUNDAMENTAL DARK SPATIAL SOLITONS IN SEMICONDUCTORS USING PICOSECOND PULSES [J].
ALLAN, GR ;
SKINNER, SR ;
ANDERSEN, DR ;
SMIRL, AL .
OPTICS LETTERS, 1991, 16 (03) :156-158
[3]  
[Anonymous], OPTICAL WAVEGUIDE TH
[4]  
[Anonymous], 2007, NONLINEAR FIBER OPTI
[5]  
Barenblatt G.I., 1996, Scaling, Self-Similarity, and Intermediate Asymptotics: Dimensional Analysis and Intermediate Asymptotics No. 14, V14
[6]   Dark solitons as quasiparticles in trapped condensates [J].
Brazhnyi, V. A. ;
Konotop, V. V. ;
Pitaevskii, L. P. .
PHYSICAL REVIEW A, 2006, 73 (05)
[7]   Direct measurement of three-body interactions amongst charged colloids -: art. no. 078301 [J].
Brunner, M ;
Dobnikar, J ;
von Grünberg, HH ;
Bechinger, C .
PHYSICAL REVIEW LETTERS, 2004, 92 (07)
[8]   Self-similar evolutions of parabolic, Hermite-Gaussian, and hybrid optical pulses: Universality and diversity [J].
Chen, SH ;
Yi, L ;
Guo, DS ;
Lu, PX .
PHYSICAL REVIEW E, 2005, 72 (01)
[9]   Spatiotemporal Nonlinear Optical Self-Similarity in Three Dimensions [J].
Chen, Shihua ;
Dudley, John M. .
PHYSICAL REVIEW LETTERS, 2009, 102 (23)
[10]   Solitons for the cubic-quintic nonlinear Schrodinger equation with varying coefficients [J].
Chen Yuan-Ming ;
Ma Song-Hua ;
Ma Zheng-Yi .
CHINESE PHYSICS B, 2012, 21 (05)