ROS-induced ROS release orchestrated by Nox4, Nox2, and mitochondria in VEGF signaling and angiogenesis

被引:197
作者
Kim, Young-Mee [1 ,2 ,3 ]
Kim, Seok-Jo [4 ,7 ]
Tatsunami, Ryosuke [6 ,7 ]
Yamamura, Hisao [5 ]
Fukai, Tohru [1 ,2 ,3 ]
Ushio-Fukai, Masuko [1 ,7 ]
机构
[1] Augusta Univ, Med Coll Georgia, Vasc Biol Ctr, 1459 Laney Walker Blvd,CB-3212A, Augusta, GA 30912 USA
[2] Univ Illinois, Ctr Cardiovasc Res, Dept Med Cardiol, Chicago, IL USA
[3] Univ Illinois, Ctr Cardiovasc Res, Dept Med & Pharmacol, Chicago, IL USA
[4] Northwestern Univ, Feinberg Sch Med, Dept Med, Div Pulm & Crit Care Med, Chicago, IL 60611 USA
[5] Nagoya City Univ, Grad Sch Pharmaceut Sci, Dept Mol & Cellular Pharmacol, Nagoya, Aichi, Japan
[6] Hokkaido Pharmaceut Univ, Sch Pharm, Sapporo, Hokkaido, Japan
[7] Univ Illinois, Cardiovasc Res Ctr, Dept Pharmacol, Chicago, IL USA
来源
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY | 2017年 / 312卷 / 06期
基金
美国国家卫生研究院;
关键词
reactive oxygen species; NADPH oxidase; mitochondria; vascular endothelial growth factor; angiogenesis; ENDOTHELIAL-CELL MIGRATION; OXYGEN SPECIES GENERATION; REACTIVE OXYGEN; NADPH OXIDASE; HYDROGEN-PEROXIDE; GROWTH; ACTIVATION; PROTEIN; NEOVASCULARIZATION; COMPARTMENTALIZATION;
D O I
10.1152/ajpcell.00346.2016
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Reactive oxygen species (ROS) derived from NADPH oxidase (NOX) and mitochondria play a critical role in growth factor-induced switch from a quiescent to an angiogenic phenotype in endothelial cells (ECs). However, how highly diffusible ROS produced from different sources can coordinate to stimulate VEGF signaling and drive the angiogenic process remains unknown. Using the cytosol-and mitochondria-targeted redox-sensitive RoGFP biosensors with real-time imaging, here we show that VEGF stimulation in human ECs rapidly increases cytosolic RoGFP oxidation within 1 min, followed by mitochondrial RoGFP oxidation within 5 min, which continues at least for 60 min. Silencing of Nox4 or Nox2 or overexpression of mitochondria-targeted catalase significantly inhibits VEGF-induced tyrosine phosphorylation of VEGF receptor type 2 (VEGFR2-pY), EC migration and proliferation at the similar extent. Exogenous hydrogen peroxide (H2O2) or overexpression of Nox4, which produces H2O2, increases mitochondrial ROS (mtROS), which is prevented by Nox2 siRNA, suggesting that Nox2 senses Nox4-derived H2O2 to promote mtROS production. Mechanistically, H2O2 increases S36 phosphorylation of p66Shc, a key mtROS regulator, which is inhibited by siNox2, but not by siNox4. Moreover, Nox2 or Nox4 knockdown or overexpression of S36 phosphorylation-defective mutant p66Shc(S36A) inhibits VEGF-induced mtROS, VEGFR2-pY, EC migration, and proliferation. In summary, Nox4-derived H2O2 in part activates Nox2 to increase mtROS via pSer36-p66Shc, thereby enhancing VEGFR2 signaling and angiogenesis in ECs. This may represent a novel feed-forward mechanism of ROS-induced ROS release orchestrated by the Nox4/ Nox2/pSer36-p66Shc/mtROS axis, which drives sustained activation of angiogenesis signaling program.
引用
收藏
页码:C749 / C764
页数:16
相关论文
共 67 条
[1]   NADPH oxidase activity selectively modulates vascular endothelial growth factor signaling pathways [J].
Abid, Md. Ruhul ;
Spokes, Katherine C. ;
Shih, Shou-Ching ;
Aird, William C. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (48) :35373-35385
[2]   Upregulation of Nox4 by Hypertrophic Stimuli Promotes Apoptosis and Mitochondrial Dysfunction in Cardiac Myocytes [J].
Ago, Tetsuro ;
Kuroda, Junya ;
Pain, Jayashree ;
Fu, Cexiong ;
Li, Hong ;
Sadoshima, Junichi .
CIRCULATION RESEARCH, 2010, 106 (07) :1253-U183
[3]   Cysteine-mediated redox signalling in the mitochondria [J].
Bak, D. W. ;
Weerapana, E. .
MOLECULAR BIOSYSTEMS, 2015, 11 (03) :678-697
[4]   Nox family NADPH oxidases: Molecular mechanisms of activation [J].
Brandes, Ralf P. ;
Weissmann, Norbert ;
Schroeder, Katrin .
FREE RADICAL BIOLOGY AND MEDICINE, 2014, 76 :208-226
[5]   Involvement of Nox2 NADPH Oxidase in Retinal Neovascularization [J].
Chan, Elsa C. ;
van Wijngaarden, Peter ;
Liu, Guei-Sheung ;
Jiang, Fan ;
Peshavariya, Hitesh ;
Dusting, Gregory J. .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2013, 54 (10) :7061-7067
[6]   Evolution of Mitochondria as Signaling Organelles [J].
Chandel, Navdeep S. .
CELL METABOLISM, 2015, 22 (02) :204-206
[7]   Copper Transport Protein Antioxidant-1 Promotes Inflammatory Neovascularization via Chaperone and Transcription Factor Function [J].
Chen, Gin-Fu ;
Sudhahar, Varadarajan ;
Youn, Seock-Won ;
Das, Archita ;
Cho, Jaehyung ;
Kamiya, Tetsuro ;
Urao, Norifumi ;
McKinney, Ronald D. ;
Surenkhuu, Bayasgalan ;
Hamakubo, Takao ;
Iwanari, Hiroko ;
Li, Senlin ;
Christman, John W. ;
Shantikumar, Saran ;
Angelini, Gianni D. ;
Emanueli, Costanza ;
Ushio-Fukai, Masuko ;
Fukai, Tohru .
SCIENTIFIC REPORTS, 2015, 5
[8]   Mitochondrial function is required for hydrogen peroxide-induced growth factor receptor transactivation and downstream signaling [J].
Chen, K ;
Thomas, SR ;
Albano, A ;
Murphy, MP ;
Keaney, JF .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (33) :35079-35086
[9]   Regulation of ROS signal transduction by NADPH oxidase 4 localization [J].
Chen, Kai ;
Kirber, Michael T. ;
Xiao, Hui ;
Yang, Yu ;
Keaney, John F., Jr. .
JOURNAL OF CELL BIOLOGY, 2008, 181 (07) :1129-1139
[10]  
Chen K, 2009, ANTIOXID REDOX SIGN, V11, P2467, DOI [10.1089/ars.2009.2594, 10.1089/ARS.2009.2594]