Improved mechanical properties of hydroxyapatite/poly(ε-caprolactone) scaffolds by surface modification of hydroxyapatite

被引:65
作者
Wang, Yan [1 ]
Dai, Jing [1 ]
Zhang, Qingchun [1 ]
Xiao, Yan [1 ]
Lang, Meidong [1 ]
机构
[1] E China Univ Sci & Technol, Sch Mat Sci & Engn, Minist Educ, Shanghai Key Lab Adv Polymer Mat,Key Lab Ultrafin, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
Scaffold; Poly(epsilon-caprolactone); Hydroxyapatite; Surface grafting; Mechanical property; IN-VITRO CHARACTERIZATION; GRAFTING POLYMERIZATION; COMPOSITE SCAFFOLDS; PLGA SCAFFOLDS; POLY(EPSILON-CAPROLACTONE); POLY(L-LACTIDE); NANOCOMPOSITES; NANOPARTICLES; NANOCRYSTALS; DEGRADATION;
D O I
10.1016/j.apsusc.2010.03.127
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Scaffolds comprising hydroxyapatite (HAP) or poly(epsilon-caprolactone)-grafted hydroxyapatite (g-HAP) and poly(epsilon-caprolactone) (PCL) were prepared using the thermally induced phase separation/salt leaching technique. The g-HAP nanoparticles were evaluated by Fourier Transformation Infrared Spectroscopy (FTIR) and thermal gravimetric analysis (TGA). Power X-ray Diffraction (XRD) patterns confirmed the successful grafting on the surface of HAP. The effects on mechanical strength, porosity and thermal property of scaffolds by the introduction of nanoparticles were extensively investigated. The compressive modulus of the scaffold was greatly improved by the addition of g-HAP nanoparticles. Especially the compressive modulus of the g-HAP/PCL scaffold containing 20 wt% of g-HAP was 59.4% higher than that of the corresponding HAP/PCL scaffold. (C) 2010 Elsevier B. V. All rights reserved.
引用
收藏
页码:6107 / 6112
页数:6
相关论文
共 42 条
[1]   MECHANISMS OF POLYMER DEGRADATION IN IMPLANTABLE DEVICES .1. POLY(CAPROLACTONE) [J].
ALI, SAM ;
ZHONG, SP ;
DOHERTY, PJ ;
WILLIAMS, DF .
BIOMATERIALS, 1993, 14 (09) :648-656
[2]   Surface modification of hydroxyapatite. Part II. Silica [J].
Borum, L ;
Wilson, OC .
BIOMATERIALS, 2003, 24 (21) :3681-3688
[3]   Surface modification of hydroxyapatite. Part I. Dodecyl alcohol [J].
Borum-Nicholas, L ;
Wilson, OC .
BIOMATERIALS, 2003, 24 (21) :3671-3679
[4]   Poly-ε-caprolactone/hydroxyapatite composites for bone regeneration:: in vitro characterization and human osteoblast response [J].
Causa, F ;
Netti, PA ;
Ambrosio, L ;
Ciapetti, G ;
Baldini, N ;
Pagani, S ;
Martini, D ;
Giunti, A .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2006, 76A (01) :151-162
[5]   FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde [J].
Chang, MC ;
Tanaka, J .
BIOMATERIALS, 2002, 23 (24) :4811-4818
[6]   Preparation of Gelatin coated hydroxyapatite nanorods and the stability of its aqueous colloidal [J].
Chen, Minfang ;
Tan, Junjun ;
Lian, Yuying ;
Liu, Debao .
APPLIED SURFACE SCIENCE, 2008, 254 (09) :2730-2735
[7]   Surface modification of hydroxyapatite nanocrystals by grafting polymers containing phosphonic acid groups [J].
Choi, Hyung Woo ;
Lee, Hong Jae ;
Kim, Kyung Ja ;
Kim, Hyun-Min ;
Lee, Sang Cheon .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2006, 304 (01) :277-281
[8]   Osteoblast growth and function in porous poly ε-caprolactone matrices for bone repair:: a preliminary study [J].
Ciapetti, G ;
Ambrosio, L ;
Savarino, L ;
Granchi, D ;
Cenni, E ;
Baldini, N ;
Pagani, S ;
Guizzardi, S ;
Causa, F ;
Giunti, A .
BIOMATERIALS, 2003, 24 (21) :3815-3824
[9]   Improved mechanical properties of HIPS/hydroxyapatite composites by surface modification of hydroxyapatite via in-situ polymerization of styrene [J].
Gong, XH ;
Tang, CY ;
Hu, HC ;
Zhou, XP ;
Xie, XL .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2004, 15 (10) :1141-1146
[10]   Biodegradable and biocompatible nanocomposites of poly(ε-caprolactone) with hydroxyapatite nanocrystals:: Thermal and mechanical properties [J].
Hao, JY ;
Yuan, ML ;
Deng, XM .
JOURNAL OF APPLIED POLYMER SCIENCE, 2002, 86 (03) :676-683