The Lichnerowicz-Obata Theorem on Sub-Riemannian Manifolds with Transverse Symmetries

被引:10
作者
Baudoin, Fabrice [1 ]
Kim, Bumsik [1 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
关键词
Sub-Riemannian geometry; Obata theorem; Lichnerowicz estimate; QUATERNIONIC CONTACT MANIFOLD; SUBELLIPTIC HEAT KERNEL; 1ST EIGENVALUE; LAPLACIAN; INEQUALITIES; BOUNDS;
D O I
10.1007/s12220-014-9542-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a lower bound for the first eigenvalue of the sub-Laplacian on sub-Riemannian manifolds with transverse symmetries. When the manifold is of H-type, we obtain a corresponding rigidity result: If the optimal lower bound for the first eigenvalue is reached, then the manifold is equivalent to a 1- or a 3-Sasakian sphere.
引用
收藏
页码:156 / 170
页数:15
相关论文
共 23 条
[1]  
[Anonymous], 2006, Progress in Mathematics
[2]  
Aribi A., J GEOM ANAL IN PRESS
[3]   THE LICHNEROWICZ THEOREM ON CR MANIFOLDS [J].
Barletta, Elisabetta .
TSUKUBA JOURNAL OF MATHEMATICS, 2007, 31 (01) :77-97
[4]  
Baudoin F., ARXIV11013590
[5]  
Baudoin F., ARXIV14024490
[6]  
Baudoin F., POTENTIAL A IN PRESS
[7]   Sobolev, Poincare, and isoperimetric inequalities for subelliptic diffusion operators satisfying a generalized curvature dimension inequality [J].
Baudoin, Fabrice ;
Kim, Bumsik .
REVISTA MATEMATICA IBEROAMERICANA, 2014, 30 (01) :109-131
[8]   Curvature Dimension Inequalities and Subelliptic Heat Kernel Gradient Bounds on Contact Manifolds [J].
Baudoin, Fabrice ;
Wang, Jing .
POTENTIAL ANALYSIS, 2014, 40 (02) :163-193
[9]   The subelliptic heat kernel on the CR sphere [J].
Baudoin, Fabrice ;
Wang, Jing .
MATHEMATISCHE ZEITSCHRIFT, 2013, 275 (1-2) :135-150
[10]   Nonnegativity of CR Paneitz Operator and Its Application to the CR Obata's Theorem [J].
Chang, Shu-Cheng ;
Chiu, Hung-Lin .
JOURNAL OF GEOMETRIC ANALYSIS, 2009, 19 (02) :261-287