Random Matrix Spectral Form Factor of Dual-Unitary Quantum Circuits

被引:53
作者
Bertini, Bruno [1 ]
Kos, Pavel [2 ]
Prosen, Tomaz [2 ]
机构
[1] Univ Oxford, Theoret Phys, Parks Rd, Oxford OX1 3PU, England
[2] Univ Ljubljana, Fac Math & Phys, Jadranska 19, Ljubljana 1000, Slovenia
基金
欧盟地平线“2020”;
关键词
SYSTEM; CHAOS;
D O I
10.1007/s00220-021-04139-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate a class of local quantum circuits on chains of d-level systems (qudits) that share the so-called `dual unitarity' property. In essence, the latter property implies that these systems generate unitary dynamics not only when propagating in time, but also when propagating in space. We consider space-time homogeneous (Floquet) circuits and perturb them with a quenched single-site disorder, i.e. by applying independent single site random unitaries drawn from arbitrary non-singular distribution over SU(d), e.g. one concentrated around the identity, after each layer of the circuit. We identify the spectral form factor at time t in the limit of long chains as the dimension of the commutant of a finite set of operators on a qudit ring of t sites. For general dual unitary circuits of qubits (d = 2) and a family of their extensions to higher d > 2, we provide an explicit construction of the commutant and prove that spectral form factor exactly matches the prediction of circular unitary ensemble for all t, if only the local 2-qubit gates are different from a SWAP (non-interacting gate).
引用
收藏
页码:597 / 620
页数:24
相关论文
共 34 条
[1]  
Alicki R., 2001, QUANTUM DYNAMICAL SY
[2]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[3]   LEVEL CLUSTERING IN REGULAR SPECTRUM [J].
BERRY, MV ;
TABOR, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1977, 356 (1686) :375-394
[5]   QUANTIZING A CLASSICALLY ERGODIC SYSTEM - SINAI BILLIARD AND THE KKR METHOD [J].
BERRY, MV .
ANNALS OF PHYSICS, 1981, 131 (01) :163-216
[6]   Exact Correlation Functions for Dual-Unitary Lattice Models in 1+1 Dimensions [J].
Bertini, Bruno ;
Kos, Pavel ;
Prosen, Tomaz .
PHYSICAL REVIEW LETTERS, 2019, 123 (21)
[7]   Exact Spectral Form Factor in a Minimal Model of Many-Body Quantum Chaos [J].
Bertini, Bruno ;
Kos, Pavel ;
Prosen, Tomaz .
PHYSICAL REVIEW LETTERS, 2018, 121 (26)
[8]   CHARACTERIZATION OF CHAOTIC QUANTUM SPECTRA AND UNIVERSALITY OF LEVEL FLUCTUATION LAWS [J].
BOHIGAS, O ;
GIANNONI, MJ ;
SCHMIT, C .
PHYSICAL REVIEW LETTERS, 1984, 52 (01) :1-4
[9]   ON THE CONNECTION BETWEEN QUANTIZATION OF NON-INTEGRABLE SYSTEMS AND STATISTICAL-THEORY OF SPECTRA [J].
CASATI, G ;
VALZGRIS, F ;
GUARNIERI, I .
LETTERE AL NUOVO CIMENTO, 1980, 28 (08) :279-282
[10]  
Chan A., ARXIV201205295