Biomimetic glycopeptide hydrogel coated PCL/nHA scaffold for enhanced cranial bone regeneration via macrophage M2 polarization-induced osteo-immunomodulation

被引:176
作者
Wang, Yaping [1 ,2 ]
Wang, Jingrong [2 ]
Gao, Rui [2 ]
Liu, Xiang [1 ,2 ]
Feng, Zujian [2 ]
Zhang, Chuangnian [2 ,3 ]
Huang, Pingsheng [2 ,3 ]
Dong, Anjie [1 ]
Kong, Deling [4 ]
Wang, Weiwei [2 ,3 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Dept Polymer Sci & Engn, Key Lab Syst Bioengn,Minist Educ, Tianjin 300072, Peoples R China
[2] Chinese Acad Med Sci & Peking Union Med Coll, Inst Biomed Engn, Tianjin Key Lab Biomat Res, Tianjin 300192, Peoples R China
[3] Chinese Acad Med Sci, Key Lab Innovat Cardiovasc Devices, Beijing 100144, Peoples R China
[4] Nankai Univ, Coll Life Sci, State Key Lab Med Chem Biol, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Composite scaffold; Bone regeneration; Glycopeptide hydrogel; Macrophage polarization; Immunomodulation; STEM-CELLS; TISSUE; DIFFERENTIATION; DELIVERY; SURFACE;
D O I
10.1016/j.biomaterials.2022.121538
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The reconstruction of large cranial bone defects by bioactive materials without exogenous cells or growth factors remains a substantial clinical challenge. Here, synthetic fibrous glycopeptide hydrogel (GR(gel)) self-assembled by beta-sheet RADA16-grafted glucomannan was designed to mimic the glycoprotein composition and the fibrillar architecture of natural extracellular matrix (ECM), which was non-covalently composited with 3D-printed polycaprolactone/nano hydroxyapatite (PCL/nHA) scaffold for cranial bone regeneration. The glycopeptide hydrogel significantly promoted the proliferation, osteogenic differentiation of bone mesenchymal stem cells (BMSCs), which was further augmented by GR(gel)-induced macrophage M2-phonotype polarization and the effective M2 macrophage-BMSC crosstalk. The repair of critical-size skull bone defect in rat indicated a superior efficacy of PCL/nHA@GR(gel) implant on bone regeneration and osseointegration, with an average bone area of 83.3% throughout the defect location at 12 weeks post treatment. Furthermore, the osteo-immunomodulatory GR(gel) induced a reparative microenvironment similar with that in normal cranium, as characterized by an increased percentage of anti-inflammatory M2 macrophages and osteoblasts, and high-level vascularization. Collectively, the composite scaffold developed here with macrophage polarization-mediated osteo-immunomodulation may represent a promising implant for expediting in situ bone regeneration by providing biochemical and osteoinductive cues at the injured tissue.
引用
收藏
页数:13
相关论文
共 51 条
[1]   A review on hydroxyapatite coatings for the biomedical applications: experimental and theoretical perspectives [J].
Awasthi, Shikha ;
Pandey, Sarvesh Kumar ;
Arunan, E. ;
Srivastava, Chandan .
JOURNAL OF MATERIALS CHEMISTRY B, 2021, 9 (02) :228-249
[2]   A multifaceted coating on titanium dictates osteoimmunomodulation and osteo/angio-genesis towards ameliorative osseointegratioxn [J].
Bai, Long ;
Du, Zhibin ;
Du, Jingjing ;
Yao, Wei ;
Zhang, Jiaming ;
Weng, Zeming ;
Liu, Si ;
Zhao, Ya ;
Liu, Yanlian ;
Zhang, Xiangyu ;
Huang, Xiaobo ;
Yao, Xiaohong ;
Crawford, Ross ;
Hang, Ruiqiang ;
Huang, Di ;
Tang, Bin ;
Xiao, Yin .
BIOMATERIALS, 2018, 162 :154-169
[3]   Hydrogel screening approaches for bone and cartilage tissue regeneration [J].
Benmassaoud, Mohammed M. ;
Gultian, Kirstene A. ;
DiCerbo, Matthew ;
Vega, Sebastian L. .
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 2020, 1460 (01) :25-42
[4]   Engineered bridge protein with dual affinity for bone morphogenetic protein-2 and collagen enhances bone regeneration for spinal fusion [J].
Briquez, Priscilla S. ;
Tsai, Hsiu-Ming ;
Watkins, Elyse A. ;
Hubbell, Jeffrey A. .
SCIENCE ADVANCES, 2021, 7 (24)
[5]   Integrin-Mediated Interactions Control Macrophage Polarization in 3D Hydrogels [J].
Cha, Byung-Hyun ;
Shin, Su Ryon ;
Leijten, Jeroen ;
Li, Yi-Chen ;
Singh, Sonali ;
Liu, Julie C. ;
Annabi, Nasim ;
Abdi, Reza ;
Dokmeci, Mehmet R. ;
Vrana, Nihal Engin ;
Ghaemmaghami, Amir M. ;
Khademhosseini, Ali .
ADVANCED HEALTHCARE MATERIALS, 2017, 6 (21)
[6]   Multifunctional Chitosan Inverse Opal Particles for Wound Healing [J].
Chen, Canwen ;
Liu, Yuxiao ;
Wang, Huan ;
Chen, Guopu ;
Wu, Xiuwen ;
Ren, Jianan ;
Zhang, Huidan ;
Zhao, Yuanjin .
ACS NANO, 2018, 12 (10) :10493-10500
[7]   Osteoimmunomodulation for the development of advanced bone biomaterials [J].
Chen, Zetao ;
Klein, Travis ;
Murray, Rachael Z. ;
Crawford, Ross ;
Chang, Jiang ;
Wu, Chengtie ;
Xiao, Yin .
MATERIALS TODAY, 2016, 19 (06) :304-321
[8]   Osteogenic differentiation of bone marrow MSCs by β-tricalcium phosphate stimulating macrophages via BMP2 signalling pathway [J].
Chen, Zetao ;
Wu, Chengtie ;
Gu, Wenyi ;
Klein, Travis ;
Crawford, Ross ;
Xiao, Yin .
BIOMATERIALS, 2014, 35 (05) :1507-1518
[9]   Microporous methacrylated glycol chitosan-montmorillonite nanocomposite hydrogel for bone tissue engineering [J].
Cui, Zhong-Kai ;
Kim, Soyon ;
Baljon, Jessalyn J. ;
Wu, Benjamin M. ;
Aghaloo, Tara ;
Lee, Min .
NATURE COMMUNICATIONS, 2019, 10 (1)
[10]   Bone tissue engineering via growth factor delivery: from scaffolds to complex matrices [J].
De Witte, Tinke-Marie ;
Fratila-Apachitei, Lidy E. ;
Zadpoor, Amir A. ;
Peppas, Nicholas A. .
REGENERATIVE BIOMATERIALS, 2018, 5 (04) :197-211