Lipschitz continuity of the gradient of a one-parametric class of SOC merit functions

被引:3
|
作者
Chen, Jein-Shan [1 ]
Pan, Shaohua [2 ]
机构
[1] Natl Taiwan Normal Univ, Dept Math, Taipei, Taiwan
[2] S China Univ Technol, Sch Math Sci, Guangzhou, Guangdong, Peoples R China
关键词
second-order cone; merit function; spectral factorization; Lipschitz continuity; CONE COMPLEMENTARITY-PROBLEM; FISCHER-BURMEISTER FUNCTION; SQUARED NORM;
D O I
10.1080/02331930802180319
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this article, we show that a one-parametric class of SOC merit functions has a Lipschitz continuous gradient; and moreover, the Lipschitz constant is related to the parameter in this class of SOC merit functions. This fact will lay a building block when the merit function approach as well as the Newton-type method are employed for solving the second-order cone complementarity problem with this class of merit functions.
引用
收藏
页码:661 / 676
页数:16
相关论文
共 9 条