A DFT Study on the Activity Origin of Fe-N-C Sites for Oxygen Reduction Reaction

被引:11
|
作者
Zhang, Shishi [1 ]
Qin, Yanyang [1 ]
Ding, Shujiang [1 ]
Su, Yaqiong [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Chem, Xian Key Lab Sustainable Energy Mat Chem, State Key Lab Elect Insulat & Power Equipment, Xian 710049, Peoples R China
[2] Eindhoven Univ Technol, Dept Chem Engn & Chem, Lab Inorgan Mat & Catalysis, POB 513, NL-5600 MB Eindhoven, Netherlands
关键词
active site; density functional calculations; electrochemistry; oxygen reduction reaction; single atom catalysts; SINGLE-ATOM CATALYSTS; ELECTROCATALYST; IDENTIFICATION; CARBON;
D O I
10.1002/cphc.202200165
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Iron-nitrogen-carbon materials have been known as the most promising non-noble metal catalyst for proton-exchange membrane fuel cells (PEMFCs), but the genuine active sites for oxygen reduction reaction (ORR) are still arguable. Herein, by the thorough density functional theory investigations, we unravel that the planar Fe2N6 site exhibits excellent ORR catalytic activity over both FeN3 and FeN4 sites, and the potential-determining step is determined to be the *OH hydrogenation step with an overpotential of 0.415 V. The ORR activity of Fe2N6 site originates from the low spin magnetic moment (1.11 mu(B)), which leads to high antibonding states and low d-band center of the Fe center, further leads to weak binding strength of *OH species. The density of FeN4 sites only has little influence on the ORR activity owing to the similar interaction between active site and intermediates in ORR. Our research sheds light on the activity origin of iron-nitrogen-carbon materials for ORR.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Excavated Fe-N-C Sites for Enhanced Electrocatalytic Activity in the Oxygen Reduction Reaction
    Jeong, Beomgyun
    Shin, Dongyoon
    Jeon, Hongrae
    Ocon, Joey D.
    Mun, Bongjin Simon
    Baik, Jaeyoon
    Shin, Hyun-Joon
    Lee, Jaeyoung
    CHEMSUSCHEM, 2014, 7 (05) : 1289 - 1294
  • [2] Atomic Fe-N-C Sites on Porous Carbon Nanostructures for Oxygen Reduction Reaction
    Wang, Minkang
    Wang, Xinming
    Liao, Tianhao
    Zhang, Xinglong
    Tang, Hui
    CHEMISTRYSELECT, 2022, 7 (22):
  • [3] Synergistic effect of Fe-Ru alloy and Fe-N-C sites on oxygen reduction reaction
    Sun, Zhuangzhi
    Kong, Xiangpeng
    Liu, Jia
    Ding, Shujiang
    Su, Yaqiong
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 678 : 1104 - 1111
  • [4] A Facile Strategy to Boost the Active Sites of Fe-N-C Electrocatalyst for the Oxygen Reduction Reaction
    Shen, Shuiyun
    Li, Lin
    Fu, Cehuang
    Wei, Guanghua
    Cheng, Xiaojing
    Yin, Jiewei
    Yan, Xiaohui
    Wu, Gang
    Zhang, Junliang
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (03)
  • [5] Fe-N-C Electrocatalysts with Densely Accessible Fe-N4 Sites for Efficient Oxygen Reduction Reaction
    Zhou, Yazhou
    Chen, Guangbo
    Wang, Qing
    Wang, Ding
    Tao, Xiafang
    Zhang, Tierui
    Feng, Xinliang
    Mullen, Klaus
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (34)
  • [6] Zero-valence Fe boosts the activity of Fe-N-C electrocatalyst in oxygen reduction reaction
    Dong, Wenjing
    Zhang, Junjie
    Li, Wanting
    Wang, Bin
    Sun, Xiannian
    Huang, Naibao
    IONICS, 2022, 28 (02) : 879 - 891
  • [7] Stabilizing Fe-N-C Catalysts as Model for Oxygen Reduction Reaction
    Ma, Qianli
    Jin, Huihui
    Zhu, Jiawei
    Li, Zilan
    Xu, Hanwen
    Liu, Bingshuai
    Zhang, Zhiwei
    Ma, Jingjing
    Mu, Shichun
    ADVANCED SCIENCE, 2021, 8 (23)
  • [8] Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction
    Liu, Kang
    Fu, Junwei
    Lin, Yiyang
    Luo, Tao
    Ni, Ganghai
    Li, Hongmei
    Lin, Zhang
    Liu, Min
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [9] Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction
    Kang Liu
    Junwei Fu
    Yiyang Lin
    Tao Luo
    Ganghai Ni
    Hongmei Li
    Zhang Lin
    Min Liu
    Nature Communications, 13
  • [10] Oxygen-enriched Fe-N-C electrocatalyst for efficient oxygen reduction reaction
    Wang, Lang
    Zhang, Yonghang
    Zhou, Linxiang
    Luo, Guangtao
    Meng, Zhiwei
    Jin, Haodong
    Zhu, Enze
    Xu, Mingli
    JOURNAL OF SOLID STATE CHEMISTRY, 2024, 339