Direct calciothermic reduction of porous calcium titanate to porous titanium

被引:19
作者
Lei, Xianjun [2 ,3 ,4 ]
Xu, Baoqiang [1 ,2 ,3 ,4 ]
Yang, Guobo [2 ,3 ,4 ]
Shi, Tengteng [2 ,3 ,4 ]
Liu, Dachun [2 ,3 ,4 ]
Yang, Bin [1 ,2 ,3 ,4 ]
机构
[1] Kunming Univ Sci & Technol, State Key Lab Complex Nonferrous Met Resources Cl, Kunming, Yunnan, Peoples R China
[2] Natl Engn Lab Vacuum Met, Kunming, Yunnan, Peoples R China
[3] Kunming Univ Sci & Techonol, Yunnan Prov Key Lab Nonferrous Vacuum Met, Kunming, Yunnan, Peoples R China
[4] Kunming Univ Sci & Technol, Fac Met & Energy Engn, Kunming 650093, Yunnan, Peoples R China
来源
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS | 2018年 / 91卷
基金
中国国家自然科学基金;
关键词
Porous titanium; Calciothermic reduction; Titanium; Porous calcium titanate; Ca-dissolved CaO-CaCl2 molten salt; MECHANICAL-PROPERTIES; POWDER; FOAMS; MAGNESIUM; CHLORIDE; DIOXIDE; HYDRIDE; ALLOYS;
D O I
10.1016/j.msec.2018.05.027
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
A metallurgical material integration concept, using porous calcium titanate (CaTiO3) as raw material, was put forward for preparation of metallic titanium powder and porous titanium by calciothermic reduction. Porous metallic titanium was prepared by calcium vapor reduction at 1273 K for 6 h with two types of interconnected pores in titanium samples. The interconnected macropores about 50-300 pm were inherited from porous CaTiO3, and the micropores about 5-40 pm were made by leaching removal of byproduct CaO in reduction products. Metallic porous titanium was fabricated in Ca-dissolved CaO-CaCl2 molten salt mixtures by self-sintering and had a good interconnectivity inside with thickness about 155 pm and the porosities of the porous titanium are 65-81%.
引用
收藏
页码:125 / 134
页数:10
相关论文
共 37 条
  • [1] Preparation of hafnium powder by calciothermic reduction of HfO2 in molten chloride bath
    Abdelkader, A. M.
    Daher, A.
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 469 (1-2) : 571 - 575
  • [2] Production of highly porous titanium (Ti) scaffolds by vacuum-assisted foaming of titanium hydride (TiH2) suspension
    Ahn, Min-Kyung
    Jo, In-Hwan
    Koh, Young-Hag
    Kim, Hyoun-Ee
    [J]. MATERIALS LETTERS, 2014, 120 : 228 - 231
  • [3] Bothe R.T., 1940, SURG GYNECOL OBSTET, V71, P470
  • [4] Porous titanium processed by powder injection moulding of titanium hydride and space holders
    Carreno-Morelli, E.
    Rodriguez-Arbaizar, M.
    Amherd, A.
    Bidaux, J. -E.
    [J]. POWDER METALLURGY, 2014, 57 (02) : 93 - 96
  • [5] DUCHEYNE P, 1977, J BIOMED MATER RES, V11, P811, DOI 10.1002/jbm.820110603
  • [6] Processing of titanium foams using magnesium spacer particles
    Esen, Z.
    Bor, S.
    [J]. SCRIPTA MATERIALIA, 2007, 56 (05) : 341 - 344
  • [7] Gibson L.J., 2010, STRUCTURE MECH CELLU, P46
  • [8] Jia JG, 2013, Iron. Steel. Van. Tit., V2, P1
  • [9] Porous titanium manufactured by a novel powder tapping method using spherical salt bead space holders: Characterisation and mechanical properties
    Jia, Jiangang
    Siddiq, Abdur R.
    Kennedy, Andrew R.
    [J]. JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2015, 48 : 229 - 240
  • [10] Effect of spacer type and cold compaction pressure on structural and mechanical properties of porous titanium scaffold
    Khodaei, M.
    Meratian, M.
    Savabi, O.
    [J]. POWDER METALLURGY, 2015, 58 (02) : 152 - 160