Certain properties of multivalent analytic functions defined by q-difference operator involving the Janowski function

被引:1
作者
Wang, Bo [1 ]
Srivastava, Rekha [2 ]
Liu, Jin-Lin [1 ]
机构
[1] Yangzhou Univ, Dept Math, Yangzhou 225002, Jiangsu, Peoples R China
[2] Univ Victoria, Math & Stat, Victoria, BC V8W 3R4, Canada
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 08期
基金
中国国家自然科学基金;
关键词
q-difference operator; Janowski function; multivalent analytic function; distortion theorem; radii of starlikeness and convexity; partial sum; closure theorem; Q-STARLIKE FUNCTIONS; Q-CONVEX FUNCTIONS;
D O I
10.3934/math.2021493
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new subclass of multivalent analytic functions is defined by means of q-difference operator and Janowski function. Some properties of functions in this new subclass such as sufficient and necessary conditions, coefficient estimates, growth and distortion theorems, radii of starlikeness and convexity , partial sums and closure theorems are studied.
引用
收藏
页码:8497 / 8508
页数:12
相关论文
共 21 条
  • [1] Aldweby H, 2013, STUD U BABES-BOL MAT, V58, P529
  • [2] ALDWEBY HUDA, 2016, Advanced Studies in Contemporary Mathematics, V26, P21
  • [3] Anastassiou G. A., 2006, J INEQUAL APPL, V2006, P1
  • [4] Anastassiou GA, 2006, J KOREAN MATH SOC, V43, P425
  • [5] [Anonymous], 1909, Trans. R. Soc. Edinb, DOI [DOI 10.1017/S0080456800002751, 10.1017/S0080456800002751, 10.1017/s0080456800002751]
  • [6] Some families of multivalent functions
    Aouf, MK
    Hossen, HM
    Srivastava, HM
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 39 (7-8) : 39 - 48
  • [7] Aral A, 2006, J COMPUT ANAL APPL, V8, P249
  • [8] Some applications of a q-analogue of the Ruscheweyh type operator for multivalent functions
    Arif, Muhammad
    Srivastava, H. M.
    Umar, Sadaf
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 1211 - 1221
  • [9] Haq WU, 2017, RESULTS MATH, V72, P2157, DOI 10.1007/s00025-017-0714-4
  • [10] Jackson, 1910, Q J PURE APPL MATH, V41, P193, DOI DOI 10.1017/S0080456800002751