Phonon Thermal Transport across Multilayer Graphene/Hexagonal Boron Nitride van der Waals Heterostructures

被引:54
作者
Wu, Xin [1 ]
Han, Qiang [1 ]
机构
[1] South China Univ Technol, Sch Civil Engn & Transportat, Dept Engn Mech, Guangzhou 510640, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
graphene; hexagonal boron nitride; van der Waals heterostructure; phonon thermal transport; molecular dynamics; strain engineering; ELECTRONIC-PROPERTIES; CONDUCTANCE; GRAPHENE; FIELD;
D O I
10.1021/acsami.1c08275
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Van der Waals (vdW) heterostructures stacked vertically by graphene (Gr) and hexagonal boron nitride (h-BN), by virtue of their novel properties, will undoubtedly spark great interests from the perspective of basic physics and applied science. Herein, phonon thermal transport across multilayer Gr/h-BN vdW heterostructures was systematically investigated by extensive molecular dynamics simulations, both in terms of internal structural configuration and external modulation. The former includes the structural configuration at the Gr/h-BN interface, the proportion of components in the effective heat transfer area, and size effect, while the latter includes cross-plane strain, temperature, and interfacial coupling strength. Our results show that at 300 K it has an ultralow out-of-plane thermal conductivity of only about 8.93 MWm(-1) K-1, while the Gr/h-BN interfacial thermal conductance (ITC) is up to about 300 MWm(-2) K-1, and the latter can be modulated in a wide range from 0.5 to 3.5 times under cross-plane strain. The analysis of the spectral decomposition results indicates that the thermal transport across the Gr/h-BN interface depends almost entirely on low-frequency out-of-plane phonons below 10 THz and the quantum effect can be ignorable, which uncovers the physical mechanisms underlying the changes in the ITC and also points the path toward its modulation.
引用
收藏
页码:32564 / 32578
页数:15
相关论文
共 58 条
  • [1] Size effects in thermal conduction by phonons
    Allen, Philip B.
    [J]. PHYSICAL REVIEW B, 2014, 90 (05)
  • [2] Unraveling the 3D Atomic Structure of a Suspended Graphene/hBN van der Waals Heterostructure
    Argentero, Giacomo
    Mittelberger, Andreas
    Monazam, Mohammad Reza Ahmadpour
    Cao, Yang
    Pennycook, Timothy J.
    Mangler, Clemens
    Kramberger, Christian
    Kotakoski, Jani
    Geim, A. K.
    Meyer, Jannik C.
    [J]. NANO LETTERS, 2017, 17 (03) : 1409 - 1416
  • [3] Kapitza thermal resistance across individual grain boundaries in graphene
    Azizi, Khatereh
    Hirvonen, Petri
    Fan, Zheyong
    Harju, Ari
    Elder, Ken R.
    Ala-Nissila, Tapio
    Allaei, S. Mehdi Vaez
    [J]. CARBON, 2017, 125 : 384 - 390
  • [4] Bao H., 2018, ES ENERGY ENV, V1, P16, DOI [DOI 10.30919/ESEE8C149, DOI 10.30919/esee8c149]
  • [5] Heat Flux for Many-Body Interactions: Corrections to LAMMPS
    Boone, Paul
    Babaei, Hasan
    Wilmer, Christopher E.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2019, 15 (10) : 5579 - 5587
  • [6] The electronic properties of graphene
    Castro Neto, A. H.
    Guinea, F.
    Peres, N. M. R.
    Novoselov, K. S.
    Geim, A. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 109 - 162
  • [7] Thermal interface conductance across a graphene/hexagonal boron nitride heterojunction
    Chen, Chun-Chung
    Li, Zhen
    Shi, Li
    Cronin, Stephen B.
    [J]. APPLIED PHYSICS LETTERS, 2014, 104 (08)
  • [8] Strain Engineering of Kapitza Resistance in Few-Layer Graphene
    Chen, Jie
    Walther, Jens H.
    Koumoutsakos, Petros
    [J]. NANO LETTERS, 2014, 14 (02) : 819 - 825
  • [9] Molecular Dynamics Simulations of Heat Conduction in Nanostructures: Effect of Heat Bath
    Chen, Jie
    Zhang, Gang
    Li, Baowen
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2010, 79 (07)
  • [10] Tunable anisotropic thermal transport in porous carbon foams: The role of phonon coupling
    Chen, Xue-Kun
    Hu, Xiao-Yan
    Jia, Peng
    Xie, Zhong-Xiang
    Liu, Jun
    [J]. INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2021, 206