Petrochemical-waste-derived high-performance anode material for Li-ion batteries

被引:15
|
作者
Ko, Seunghyun [1 ,2 ]
Lee, Chul Wee [1 ,2 ]
Irm, Ji Sun [1 ,2 ]
机构
[1] Korea Res Inst Chem Technol UST 217 KRICT, C Ind Incubat Ctr, 141 Gajeong Ro, Daejeon 305600, South Korea
[2] Univ Sci & Technol, Green Chem & Environm Biotechnol, 217 Gajeong Ro, Daejeon 305350, South Korea
关键词
Anode; Lithium-ion batteries; Pyrolysis fuel oil; Soft carbon; Carbon/silicon composite; LITHIUM INSERTION; CARBON; STORAGE; NANOCOMPOSITE; ELECTRODES; ENERGY;
D O I
10.1016/j.jiec.2016.01.036
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To end the unsustainable disposal of pyrolysis fuel oil (PFO), which is a type of petrochemical waste, we investigate the use of PFO as a carbon source for soft carbon and evaluate it as an anode material for lithium-ion batteries. This material exhibites a much higher reversible capacity (366.5 mAh g(-1)) than that of commercial soft carbon (236.4 mAh g(-1)) and an extremly stable cyclability. The PFO-derived soft carbon retained 99.0% of its initial capacity after 100 cycles, and a rate capability test indicated that it retained a higher capacity at all investigated current densities compared with that of a commercial product. To further improve its lithium storage capacity, the PFO-derived soft carbon was composited with nano silicon. Notably, even after the composite was formed, the high rate capability was maintained. It was demonstrated that petrochemical waste can be converted into high-performance anode material, and this sustainable approach is readily applicable to the commercial production of anode material. (C) 2016 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:125 / 131
页数:7
相关论文
共 50 条
  • [31] Bi@C fibre synthesized by electrostatic spinning as high-performance anode material for Li-ion batteries
    Shi, Chonghua
    Fu, Hang
    Nie, Jiajin
    Yao, Shaowei
    IONICS, 2022, 28 (11) : 4977 - 4987
  • [32] Bi@C fibre synthesized by electrostatic spinning as high-performance anode material for Li-ion batteries
    Chonghua Shi
    Hang Fu
    Jiajin Nie
    Shaowei Yao
    Ionics, 2022, 28 : 4977 - 4987
  • [33] Nanograin tungsten oxide with excess oxygen as a highly reversible anode material for high-performance Li-ion batteries
    Inamdar, Akbar I.
    Chavan, Harish. S.
    Ahmed, Abu Talha Aqueel
    Cho, Sangeun
    Kim, Jongmin
    Jo, Yongcheol
    Pawar, Sambhaji M.
    Park, Youngsin
    Kim, Hyungsang
    Im, Hyunsik
    MATERIALS LETTERS, 2018, 215 : 233 - 237
  • [34] Sn@C microsphere prepared by electrostatic spinning as high-performance anode material for Li-ion batteries
    Chonghua Shi
    Xinyu Liu
    Hang Fu
    Jing Wang
    Shaowei Yao
    Journal of Materials Science, 2023, 58 : 13373 - 13386
  • [35] Highly conductive C-Si@G nanocomposite as a high-performance anode material for Li-ion batteries
    Yi, Xu
    Yu, Wan-Jing
    Tsiamtsouri, Maria A.
    Zhang, Fuqin
    He, Wenjie
    Dai, Qiongyu
    Hu, Shengyong
    Tong, Hui
    Zheng, Junchao
    Zhang, Bao
    Liao, Jiqiao
    ELECTROCHIMICA ACTA, 2019, 295 : 719 - 725
  • [36] Sn@C microsphere prepared by electrostatic spinning as high-performance anode material for Li-ion batteries
    Shi, Chonghua
    Liu, Xinyu
    Fu, Hang
    Wang, Jing
    Yao, Shaowei
    JOURNAL OF MATERIALS SCIENCE, 2023, 58 (33) : 13373 - 13386
  • [37] Construction of spherical ZnTiO3/MWCNTs composites as anode material for high-performance Li-ion batteries
    Han, Meng-Cheng
    Zhang, Jun-Hong
    Cui, Ping
    Zhu, Yan-Rong
    Yi, Ting-Feng
    SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2020, 25
  • [38] From waste graphite fines to revalorized anode material for Li-ion batteries
    Abrego-Martinez, Juan Carlos
    Wang, Youling
    Vanpeene, Victor
    Roue, Lionel
    CARBON, 2023, 209
  • [39] Modified SiO as a high performance anode for Li-ion batteries
    Hwa, Yoon
    Park, Cheol-Min
    Sohn, Hun-Joon
    JOURNAL OF POWER SOURCES, 2013, 222 : 129 - 134
  • [40] Fabrication of a Biomass-Derived Activated Carbon-Based Anode for High-Performance Li-Ion Batteries
    Ahmed, Faheem
    Almutairi, Ghazzai
    Hasan, Prince M. Z.
    Rehman, Sarish
    Kumar, Shalendra
    Shaalan, Nagih M.
    Aljaafari, Abdullah
    Alshoaibi, Adil
    AlOtaibi, Bandar
    Khan, Kaffayatullah
    MICROMACHINES, 2023, 14 (01)