Petrochemical-waste-derived high-performance anode material for Li-ion batteries

被引:15
|
作者
Ko, Seunghyun [1 ,2 ]
Lee, Chul Wee [1 ,2 ]
Irm, Ji Sun [1 ,2 ]
机构
[1] Korea Res Inst Chem Technol UST 217 KRICT, C Ind Incubat Ctr, 141 Gajeong Ro, Daejeon 305600, South Korea
[2] Univ Sci & Technol, Green Chem & Environm Biotechnol, 217 Gajeong Ro, Daejeon 305350, South Korea
关键词
Anode; Lithium-ion batteries; Pyrolysis fuel oil; Soft carbon; Carbon/silicon composite; LITHIUM INSERTION; CARBON; STORAGE; NANOCOMPOSITE; ELECTRODES; ENERGY;
D O I
10.1016/j.jiec.2016.01.036
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To end the unsustainable disposal of pyrolysis fuel oil (PFO), which is a type of petrochemical waste, we investigate the use of PFO as a carbon source for soft carbon and evaluate it as an anode material for lithium-ion batteries. This material exhibites a much higher reversible capacity (366.5 mAh g(-1)) than that of commercial soft carbon (236.4 mAh g(-1)) and an extremly stable cyclability. The PFO-derived soft carbon retained 99.0% of its initial capacity after 100 cycles, and a rate capability test indicated that it retained a higher capacity at all investigated current densities compared with that of a commercial product. To further improve its lithium storage capacity, the PFO-derived soft carbon was composited with nano silicon. Notably, even after the composite was formed, the high rate capability was maintained. It was demonstrated that petrochemical waste can be converted into high-performance anode material, and this sustainable approach is readily applicable to the commercial production of anode material. (C) 2016 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:125 / 131
页数:7
相关论文
共 50 条
  • [31] NbSb2 as an anode material for Li-ion batteries
    Reddy, M. Anji
    Varadaraju, U. V.
    JOURNAL OF POWER SOURCES, 2006, 159 (01) : 336 - 339
  • [32] Modified SiO as a high performance anode for Li-ion batteries
    Hwa, Yoon
    Park, Cheol-Min
    Sohn, Hun-Joon
    JOURNAL OF POWER SOURCES, 2013, 222 : 129 - 134
  • [33] Facile Synthesis of Hexagonal NiCo2O4 Nanoplates as High-Performance Anode Material for Li-Ion Batteries
    Chaudhari, Sudeshna
    Bhattacharjya, Dhrubajyoti
    Yu, Jong-Sung
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2015, 36 (09) : 2330 - 2336
  • [34] Nanostructured Silicon as Potential Anode Material for Li-Ion Batteries
    Raic, Matea
    Mikac, Lara
    Maric, Ivan
    Stefanic, Goran
    Skrabic, Marko
    Gotic, Marijan
    Ivanda, Mile
    MOLECULES, 2020, 25 (04):
  • [35] High-performance polycrystalline RuOx cathodes for thin film Li-ion batteries
    Perego, Daniele
    Heng, Jillian Swee Teng
    Wang, Xinghui
    Shao-Horn, Yang
    Thompson, Carl V.
    ELECTROCHIMICA ACTA, 2018, 283 : 228 - 233
  • [36] Interweaved Si@SiOx/C nanoporous spheres as anode materials for Li-ion batteries
    Tao, Hua-Chao
    Huang, Mian
    Fan, Li-Zhen
    Qu, Xuanhui
    SOLID STATE IONICS, 2012, 220 : 1 - 6
  • [37] A MoS2/Carbon hybrid anode for high-performance Li-ion batteries at low temperature
    Liu, Xizheng
    Wang, Yahui
    Yang, Yijun
    Lv, Wei
    Lian, Gang
    Golberg, Dmitri
    Wang, Xi
    Zhao, Xian
    Ding, Yi
    NANO ENERGY, 2020, 70
  • [38] Nanostructured Sn/TiO2/C composite as a high-performance anode for Li-ion batteries
    Park, Cheol-Min
    Chang, Won-Seok
    Jung, Heechul
    Kim, Jae-Hun
    Sohn, Hun-Joon
    ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (11) : 2165 - 2168
  • [39] Net W monolayer: A high-performance electrode material for Li-ion batteries
    Yu, Song
    Rao, Yong-Chao
    Li, Shun-Fang
    Duan, Xiang-Mei
    APPLIED PHYSICS LETTERS, 2018, 112 (05)
  • [40] A benign strategy toward mesoporous carbon coated Sb nanoparticles: A high-performance Li-ion/Na-ion batteries anode
    Dashairya, Love
    Chaturvedi, Vikash
    Kumar, Abhishek
    Mohanta, Tandra Rani
    Shelke, Manjusha
    Saha, Partha
    SOLID STATE IONICS, 2023, 396