Petrochemical-waste-derived high-performance anode material for Li-ion batteries

被引:15
|
作者
Ko, Seunghyun [1 ,2 ]
Lee, Chul Wee [1 ,2 ]
Irm, Ji Sun [1 ,2 ]
机构
[1] Korea Res Inst Chem Technol UST 217 KRICT, C Ind Incubat Ctr, 141 Gajeong Ro, Daejeon 305600, South Korea
[2] Univ Sci & Technol, Green Chem & Environm Biotechnol, 217 Gajeong Ro, Daejeon 305350, South Korea
关键词
Anode; Lithium-ion batteries; Pyrolysis fuel oil; Soft carbon; Carbon/silicon composite; LITHIUM INSERTION; CARBON; STORAGE; NANOCOMPOSITE; ELECTRODES; ENERGY;
D O I
10.1016/j.jiec.2016.01.036
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To end the unsustainable disposal of pyrolysis fuel oil (PFO), which is a type of petrochemical waste, we investigate the use of PFO as a carbon source for soft carbon and evaluate it as an anode material for lithium-ion batteries. This material exhibites a much higher reversible capacity (366.5 mAh g(-1)) than that of commercial soft carbon (236.4 mAh g(-1)) and an extremly stable cyclability. The PFO-derived soft carbon retained 99.0% of its initial capacity after 100 cycles, and a rate capability test indicated that it retained a higher capacity at all investigated current densities compared with that of a commercial product. To further improve its lithium storage capacity, the PFO-derived soft carbon was composited with nano silicon. Notably, even after the composite was formed, the high rate capability was maintained. It was demonstrated that petrochemical waste can be converted into high-performance anode material, and this sustainable approach is readily applicable to the commercial production of anode material. (C) 2016 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:125 / 131
页数:7
相关论文
共 50 条
  • [21] First Principles Study of Penta-siligraphene as High-Performance Anode Material for Li-Ion Batteries
    Hewen Wang
    Musheng Wu
    Zhengfang Tian
    Bo Xu
    Chuying Ouyang
    Nanoscale Research Letters, 2019, 14
  • [22] Topological semimetal porous carbon as a high-performance anode for Li-ion batteries
    Xie, Huanhuan
    Qie, Yu
    Imran, Muhammad
    Sun, Qiang
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (23) : 14253 - 14259
  • [23] Facile Fabrication of High-Performance Li-Ion Battery Carbonaceous Anode from Li-Ion Battery Waste
    Li, Zheng
    Li, Songxian
    Wang, Tao
    Yang, Kai
    Zhou, Yangen
    Tian, Zhongliang
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (09)
  • [24] Si/graphene composite as high-performance anode materials for Li-ion batteries
    Ying-jie Zhang
    Hua Chu
    Li-wen Zhao
    Long-fei Yuan
    Journal of Materials Science: Materials in Electronics, 2017, 28 : 6657 - 6663
  • [25] Advanced Nanostructured Cathode and Anode Materials for High-Performance Li-Ion Batteries
    Liu, Jun
    Wan, Yanling
    Liu, Wei
    Wang, Jinbing
    Zhou, Yichun
    Xue, Dongfeng
    ENERGY AND ENVIRONMENT FOCUS, 2012, 1 (01) : 19 - 38
  • [26] Si/graphene composite as high-performance anode materials for Li-ion batteries
    Zhang, Ying-jie
    Chu, Hua
    Zhao, Li-wen
    Yuan, Long-fei
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2017, 28 (09) : 6657 - 6663
  • [27] Facile preparation of bio-waste-derived porous carbon for high-performance electrode material for energy storage applications: Li-ion capacitor and Li-ion batteries
    Rajkumar, Palanisamy
    Thirumal, Vediyappan
    Radhika, Govindaraju
    Yoo, Kisoo
    Kim, Jinho
    BIOMASS CONVERSION AND BIOREFINERY, 2024, 14 (23) : 30707 - 30717
  • [28] Silicon as anode material for Li-ion batteries
    Ozanam, Francois
    Rosso, Michel
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2016, 213 : 2 - 11
  • [29] FeMnO3: a high-performance Li-ion battery anode material
    Cao, Kangzhe
    Liu, Huiqiao
    Xu, Xiaohong
    Wang, Yijing
    Jiao, Lifang
    CHEMICAL COMMUNICATIONS, 2016, 52 (76) : 11414 - 11417
  • [30] A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries
    Liu, Pin
    Li, Yunming
    Hu, Yong-Sheng
    Li, Hong
    Chen, Liquan
    Huang, Xuejie
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (34) : 13046 - 13052