Petrochemical-waste-derived high-performance anode material for Li-ion batteries

被引:15
|
作者
Ko, Seunghyun [1 ,2 ]
Lee, Chul Wee [1 ,2 ]
Irm, Ji Sun [1 ,2 ]
机构
[1] Korea Res Inst Chem Technol UST 217 KRICT, C Ind Incubat Ctr, 141 Gajeong Ro, Daejeon 305600, South Korea
[2] Univ Sci & Technol, Green Chem & Environm Biotechnol, 217 Gajeong Ro, Daejeon 305350, South Korea
关键词
Anode; Lithium-ion batteries; Pyrolysis fuel oil; Soft carbon; Carbon/silicon composite; LITHIUM INSERTION; CARBON; STORAGE; NANOCOMPOSITE; ELECTRODES; ENERGY;
D O I
10.1016/j.jiec.2016.01.036
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
To end the unsustainable disposal of pyrolysis fuel oil (PFO), which is a type of petrochemical waste, we investigate the use of PFO as a carbon source for soft carbon and evaluate it as an anode material for lithium-ion batteries. This material exhibites a much higher reversible capacity (366.5 mAh g(-1)) than that of commercial soft carbon (236.4 mAh g(-1)) and an extremly stable cyclability. The PFO-derived soft carbon retained 99.0% of its initial capacity after 100 cycles, and a rate capability test indicated that it retained a higher capacity at all investigated current densities compared with that of a commercial product. To further improve its lithium storage capacity, the PFO-derived soft carbon was composited with nano silicon. Notably, even after the composite was formed, the high rate capability was maintained. It was demonstrated that petrochemical waste can be converted into high-performance anode material, and this sustainable approach is readily applicable to the commercial production of anode material. (C) 2016 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:125 / 131
页数:7
相关论文
共 50 条
  • [1] High-performance silicon from quartz product waste as an anode material for Li-ion batteries
    Pan, Wenhao
    Cai, Xiaolan
    Yang, Changjiang
    Zhou, Lei
    CERAMICS INTERNATIONAL, 2022, 48 (13) : 19412 - 19423
  • [2] Soil as an inexhaustible and high-performance anode material for Li-ion batteries
    Hu, Xiaofei
    Zhang, Kai
    Cong, Liang
    Cheng, Fangyi
    Chen, Jun
    CHEMICAL COMMUNICATIONS, 2015, 51 (87) : 15827 - 15830
  • [3] Monodisperse CoSb nanocrystals as high-performance anode material for Li-ion batteries
    Wang, Shutao
    He, Meng
    Walter, Marc
    Kravchyk, Kostiantyn, V
    Kovalenko, Maksym, V
    CHEMICAL COMMUNICATIONS, 2020, 56 (89) : 13872 - 13875
  • [4] Honeycomb Boron Carbon Nitride as High-Performance Anode Material for Li-Ion Batteries
    Karbhal, Indrapal
    Chaturvedi, Vikash
    Patrike, Apurva
    Yadav, Poonam
    Shelke, Manjusha, V
    CHEMNANOMAT, 2022, 8 (07)
  • [5] TiO2 encrusted MXene as a High-Performance anode material for Li-ion batteries
    Tariq, Hanan Abdurehman
    Nisar, Umair
    Abraham, Jeffin James
    Ahmad, Zubair
    AlQaradawi, Siham
    Kahraman, Ramazan
    Shakoor, R. A.
    APPLIED SURFACE SCIENCE, 2022, 583
  • [6] SnOx/graphene anode material with multiple oxidation states for high-performance Li-ion batteries
    Zhang, Wenlan
    Zheng, Maojun
    Li, Fanggang
    You, Yuxiu
    Jiang, Dongkai
    Yuan, Hao
    Ma, Li
    Shen, Wenzhong
    NANOTECHNOLOGY, 2021, 32 (19)
  • [7] Silicon diphosphide-CNT composite anode material for high-performance Li-ion batteries
    Park, Byung Hoon
    Roh, Ha-Kyung
    Haghighat-Shishavan, Safa
    Choi, Hun Seok
    Kim, Kwang-Bum
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [8] In Situ Wrapping SiO with Carbon Nanotubes as Anode Material for High-Performance Li-Ion Batteries
    Li, Jianbin
    Wang, Lei
    Liu, Fangming
    Liu, Wenjing
    Luo, Caikun
    Liao, Yingling
    Li, Xuan
    Qu, Meizhen
    Wan, Qi
    Peng, Gongchang
    CHEMISTRYSELECT, 2019, 4 (10): : 2918 - 2925
  • [9] β12-Borophene/Graphene Heterostructure as a High-Performance Anode Material for Li-Ion Batteries
    Faramarzi, Sorour
    Movlarooy, Tayebeh
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (20) : 25966 - 25976
  • [10] Hollow reduced graphene oxide microspheres as a high-performance anode material for Li-ion batteries
    Mei, Riguo
    Song, Xiaorui
    Hu, Yan
    Yang, Yanfeng
    Zhang, Jingjie
    ELECTROCHIMICA ACTA, 2015, 153 : 540 - 545