A cleverly designed asymmetrical composite electrolyte via in-situ polymerization for high-performance, dendrite-free solid state lithium metal battery

被引:48
作者
Cai, Dan [1 ,2 ]
Qi, Xinhong [1 ,2 ]
Xiang, Jiayuan [3 ,4 ]
Wu, Xianzhang [3 ,4 ]
Li, Zhongxu [1 ,2 ]
Luo, Xuming [1 ,2 ]
Wang, Xiuli [1 ,2 ]
Xia, Xinhui [1 ,2 ]
Gu, Changdong [1 ,2 ]
Tu, Jiangping [1 ,2 ]
机构
[1] Zhejiang Univ, State Key Lab Silicon Mat, Key Lab Adv Mat & Applicat Batteries Zhejiang Pro, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Sch Mat Sci & Engn, Hangzhou 310027, Peoples R China
[3] Narada Power Source Co Ltd, Hangzhou 311305, Peoples R China
[4] Narada Ess Integrat & Operat Co Ltd, Hangzhou 310012, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
In-situ polymerization; Asymmetrical composite electrolyte; LLZTO-rich layer; High-voltage cathode; Solid-state lithium metal batteries; NETWORK; CATHODE; WINDOW;
D O I
10.1016/j.cej.2022.135030
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In-situ polymerized gel polymer electrolytes have been considered as the most promising alternative to liquid electrolyte owing to their high ionic conductivity, improved safety, simple and environmentally friendly manufacturing process, and good interfacial compatibility with electrodes. However, their poor mechanical properties are not able to prevent the Li dendrites growth in batteries. Inspired by the composite electrolytes, an asymmetrical gel electrolyte (A-PGCE) consisting of cellulose membrane-supported gel electrolyte and LLZTO-rich layer on one side is fabricated by a facile one-step in-situ polymerization method. The well-designed APGCE not only exhibits excellent properties such as superior flexibility, good thermal stability and wide electrochemical window (5.13 V), but also possesses high ionic conductivity (1.25 x 10(-3) S cm(-1)) and Li+ transference number (0.57). Furthermore, the introduced LLZTO-rich layer demonstrates excellent ability in guiding uniform Li+ deposition and suppressing Li dendrite growth, which enables the symmetrical Li-Li cells with such electrolyte to run stably for over 1750 h at 0.1 mA cm(-2) and 450 h at 0.2 mA cm(-2). Benefiting from these advantages of A-PGCE, the assembled Li metal battery with high-voltage LiCoO2 (LCO) cathode shows high initial capacity of 157.6 mAh g(-1) in the cutoff voltage of 4.3 V, and the capacity retention is 90.7% after 200 cycles at 0.2C, indicating a superior cyclic stability. The cleverly designed asymmetrical A-PGCE shows great potential in boosting the development of lithium metal batteries with high energy density and safety.
引用
收藏
页数:11
相关论文
共 64 条
[1]   Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction [J].
Bachman, John Christopher ;
Muy, Sokseiha ;
Grimaud, Alexis ;
Chang, Hao-Hsun ;
Pour, Nir ;
Lux, Simon F. ;
Paschos, Odysseas ;
Maglia, Filippo ;
Lupart, Saskia ;
Lamp, Peter ;
Giordano, Livia ;
Shao-Horn, Yang .
CHEMICAL REVIEWS, 2016, 116 (01) :140-162
[2]   High Salt-Content Plasticized Flame-Retardant Polymer Electrolytes [J].
Bai, Lu ;
Ghiassinejad, Sina ;
Brassinne, Jeremy ;
Fu, Yang ;
Wang, Jiande ;
Yang, Hui ;
Vlad, Alexandru ;
Minoia, Andrea ;
Lazzaroni, Roberto ;
Gohy, Jean-Francois .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (37) :44844-44859
[3]   Dual-interface reinforced flexible solid garnet batteries enabled by in-situ solidified gel polymer electrolytes [J].
Bi, Zhijie ;
Huang, Weilin ;
Mu, Shuang ;
Sun, Wuhui ;
Zhao, Ning ;
Guo, Xiangxin .
NANO ENERGY, 2021, 90
[4]   A highly ion -conductive three-dimensional LLZAO-PEO/LiTFSI solid electrolyte for high-performance solid-state batteries [J].
Cai, Dan ;
Wang, Donghuang ;
Chen, Yongjie ;
Zhang, Shengzhao ;
Wang, Xiuli ;
Xia, Xinhui ;
Tu, Jiangping .
CHEMICAL ENGINEERING JOURNAL, 2020, 394
[5]   In Situ Generation of Poly (Vinylene Carbonate) Based Solid Electrolyte with Interfacial Stability for LiCoO2 Lithium Batteries [J].
Chai, Jingchao ;
Liu, Zhihong ;
Ma, Jun ;
Wang, Jia ;
Liu, Xiaochen ;
Liu, Haisheng ;
Zhang, Jianjun ;
Cui, Guanglei ;
Chen, Liquan .
ADVANCED SCIENCE, 2017, 4 (02)
[6]   Flame-retardant gel polymer electrolyte and interface for quasi-solid-state sodium ion batteries [J].
Chen, Guanghai ;
Zhang, Kun ;
Liu, Yiran ;
Ye, Lin ;
Gao, Yongsheng ;
Lin, Weiran ;
Xu, Huajie ;
Wang, Xinran ;
Bai, Ying ;
Wu, Chuan .
CHEMICAL ENGINEERING JOURNAL, 2020, 401
[7]   Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework [J].
Chen, Xinzhi ;
He, Wenjun ;
Ding, Liang-Xin ;
Wang, Suqing ;
Wang, Haihui .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (03) :938-944
[8]   A Flexible Semi-Interpenetrating Network-Enhanced Ionogel Polymer Electrolyte for Highly Stable and Safe Lithium Metal Batteries [J].
Chen, Zheng ;
Yang, Yun ;
Su, Qinting ;
Huang, Songde ;
Song, Dakun ;
Ma, Rui ;
Zhu, Caizhen ;
Lv, Guanghui ;
Li, Cuihua .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (35) :41946-41955
[9]   Interface Engineering for Garnet-Based Solid-State Lithium-Metal Batteries: Materials, Structures, and Characterization [J].
Dai, Jiaqi ;
Yang, Chunpeng ;
Wang, Chengwei ;
Pastel, Glenn ;
Hu, Liangbing .
ADVANCED MATERIALS, 2018, 30 (48)
[10]   Enhancing Interfacial Contact in Solid-State Batteries with a Gradient Composite Solid Electrolyte [J].
Deng, Chenglong ;
Chen, Nan ;
Hou, Chuanyu ;
Liu, Hanxiao ;
Zhou, Zhiming ;
Chen, Renjie .
SMALL, 2021, 17 (18)