The generalized inverses of tensors and an application to linear models

被引:53
作者
Jin, Hongwei [1 ,2 ]
Bai, Minru [1 ]
Benitez, Julio [2 ]
Liu, Xiaoji [3 ]
机构
[1] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
[2] Univ Politecn Valencia, Dept Matemat Aplicada, Inst Matemat Multidisciplinar, Camino Vera S-N, Valencia 46022, Spain
[3] Guangxi Univ Nationalities, Fac Sci, Nanning 530006, Peoples R China
基金
美国国家科学基金会;
关键词
Tensors; Generalized inverses; Moore-Penrose inverse of tensors; Linear models;
D O I
10.1016/j.camwa.2017.04.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we recall and extend some tensor operations. Then, the generalized inverse of tensors is established by using tensor equations. Moreover, we investigate the least-squares solutions of tensor equations. An algorithm to compute the Moore-Penrose inverse of an arbitrary tensor is constructed. Finally, we apply the obtained results to higher order Gauss-Markov theorem. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:385 / 397
页数:13
相关论文
共 28 条
[1]  
[Anonymous], 2000, MATRIX ANAL APPL LIN
[2]  
Banachiewicz T., 1937, Acta Astron. (Ser. C), V3, P41
[3]  
Behera R., 2017, LINEAR MULTILINEAR A
[4]  
Ben-Israel A., 2003, Generalized inverses: theory and applications, V15
[5]  
Campbell SL., 1991, Generalized Inverse of Linear Transformations
[6]   ANALYSIS OF INDIVIDUAL DIFFERENCES IN MULTIDIMENSIONAL SCALING VIA AN N-WAY GENERALIZATION OF ECKART-YOUNG DECOMPOSITION [J].
CARROLL, JD ;
CHANG, JJ .
PSYCHOMETRIKA, 1970, 35 (03) :283-&
[7]   Conjugate gradient methods for toeplitz systems [J].
Chan, RH ;
Ng, MK .
SIAM REVIEW, 1996, 38 (03) :427-482
[8]  
Einstein A., 2007, COLLECTED PAPERS A E, V6
[9]  
Golub GH., 2012, MATRIX COMPUTATIONS, V3
[10]  
Harshman R. A., 1970, UCLA WORKING PAPERS, V16, P1, DOI DOI 10.1134/S0036023613040165