On solving split best proximity point and equilibrium problems in Hilbert spaces

被引:0
作者
Tiammee, Jukrapong [1 ]
Suantai, Suthep [1 ]
机构
[1] Chiang Mai Rajabhat Univ, Fac Sci & Technol, Dept Math & Stat, Chiang Mai 50300, Thailand
关键词
iterative algorithms; convergence; best proximity point; equilibrium problems; ALGORITHM; THEOREMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a split best proximity point and equilibrium problem, and find a solution of the best proximity point problem such that its image under a given bounded linear operator is a solution of the equilibrium problem. We construct an iterative algorithm to solve such problem in real Hilbert spaces and obtain a weak convergence theorem. Finally, we also give an example to illustrate our result.
引用
收藏
页码:385 / 392
页数:8
相关论文
共 14 条
[1]  
Agarwal RP, 2009, TOPOL FIXED POINT TH, V6, P1, DOI 10.1007/978-0-387-75818-3_1
[2]   Best Proximity Points: Optimal Solutions [J].
Basha, S. Sadiq .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 151 (01) :210-216
[3]   Hybrid algorithm for common best proximity points of some generalized nonself nonexpansive mappings [J].
Bunlue, Nuttawut ;
Suantai, Suthep .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (17) :7655-7666
[4]   Mixed Equilibrium Problems and Anti-periodic Solutions for Nonlinear Evolution Equations [J].
Chadli, Ouayl ;
Ansari, Qamrul Hasan ;
Yao, Jen-Chih .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 168 (02) :410-440
[5]  
Chidume CE, 2018, CARPATHIAN J MATH, V34, P191
[6]  
Combettes PL, 2005, J NONLINEAR CONVEX A, V6, P117
[7]   Best Proximity Point Theorems via Proximal Non-self Mappings [J].
Gabeleh, Moosa .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 164 (02) :565-576
[8]   The split equilibrium problem and its convergence algorithms [J].
He, Zhenhua .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
[9]  
Moudafi A, 1999, LECT NOTES ECON MATH, V477, P187
[10]  
Oettli W., 1994, Math Stud, V63, P123