EXACT BOUNDARY OBSERVABILITY AND CONTROLLABILITY OF THE WAVE EQUATION IN AN INTERVAL WITH TWO MOVING ENDPOINTS

被引:8
作者
Sengouga, Abdelmouhcene [1 ]
机构
[1] Univ Msila, Fac Math & Comp Sci, Lab Funct Anal & Geometry Spaces, Msila 28000, Algeria
关键词
Wave equation; noncylindrical domains; generalised Fourier series; observability; controllability; Hilbert uniqueness method; STABILIZATION; DOMAINS; PART;
D O I
10.3934/eect.2020014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the wave equation in an interval with two linearly moving endpoints. We give the exact solution by a series formula, then we show that the energy of the solution decays at the rate 1/t. We also establish observability results, at one or at both endpoints, in a sharp time. Moreover, using the Hilbert uniqueness method, we derive exact boundary controllability results.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 22 条
[1]  
[Anonymous], 1994, EXACT CONTROLLABILIT
[2]  
Balazs N.L., 1961, J. Math. Anal. Appl., V3, P472, DOI 10.1016/0022-247X(61)90071-3
[3]   CONTROL AND STABILIZATION FOR THE WAVE-EQUATION, PART .3. DOMAIN WITH MOVING BOUNDARY [J].
BARDOS, C ;
CHEN, G .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1981, 19 (01) :123-138
[4]  
Birkhoff G., 1989, ORDINARY DIFFERENTIA
[5]   NONLINEAR WAVE-EQUATION IN A TIME-DEPENDENT DOMAIN [J].
COOPER, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1973, 42 (01) :29-60
[6]   Exact controllability for a one-dimensional wave equation in non-cylindrical domains [J].
Cui, Lizhi ;
Liu, Xu ;
Gao, Hang .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 402 (02) :612-625
[7]   QUANTUM PHENOMENA IN RESONATORS WITH MOVING WALLS [J].
DODONOV, VV ;
KLIMOV, AB ;
NIKONOV, DE .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (07) :2742-2756
[8]   Problems on Time-Varying Domains: Formulation, Dynamics, and Challenges [J].
Knobloch, E. ;
Krechetnikov, R. .
ACTA APPLICANDAE MATHEMATICAE, 2015, 137 (01) :123-157
[9]  
KOMORNIK V, 2005, SPRINGER MG MATH, P1
[10]  
LIONS J.-L., 1988, Recherches en Mathematiques Appliquees, V8