Proteomic and Phosphoryproteomic Investigations Reveal that Autophagy-Related Protein 1, a Protein Kinase for Autophagy Initiation, Synchronously Deploys Phosphoregulation on the Ubiquitin-Like Conjugation System in the Mycopathogen Beauveria bassiana

被引:12
作者
Lin, Hai-Yan [1 ]
Ding, Jin-Li [1 ]
Peng, Yue-Jin [1 ]
Feng, Ming-Guang [1 ]
Ying, Sheng-Hua [1 ]
机构
[1] Zhejiang Univ, Coll Life Sci, Inst Microbiol, Hangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
autophagy-related kinase; conidiogenesis; filamentous fungus; fungal development; phosphoproteomic analysis; phosphorylation activity; ubiquitin-like conjugation system; CELL-DIFFERENTIATION; ASEXUAL SPORULATION; VIRULENCE; YEAST; ULK1; PATHOGENICITY; MORPHOGENESIS; CONTRIBUTES; MACHINERY; GENES;
D O I
10.1128/msystems.01463-21
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Autophagy is a conserved intracellular degradation mechanism in eukaryotes and is initiated by the protein kinase autophagy-related protein 1 (Atg1). However, except for the autophosphorylation activity of Atg1, the target proteins phosphorylated by Atg1 are largely unknown in filamentous fungi. In Beauveria bassiana (a filamentous insect-pathogenic fungus), Atg1 is indispensable for autophagy and is associated with fungal development. Comparative omics-based analyses revealed that B. bassiana Atg1 (BbAtg1) has key influence on the proteome and phosphoproteome during conidiogenesis. In terms of its physiological functions, the BbAtg1-mediated phosphoproteome is primarily associated with metabolism, signal transduction, cell cycle, and autophagy. At the proteomic level, BbAtg1 mainly regulates genes involved in protein synthesis, protein fate, and protein with binding function. Furthermore, integrative analyses of phosphoproteomic and proteomic data led to the identification of several potential targets regulated by BbAtg1 phosphorylation activity. Notably, we demonstrated that BbAtg1 phosphorylated BbAtg3, an essential component of the ubiquitin-like conjugation system in autophagic progress. Our findings indicate that in addition to being a critical component of the autophagy initiation, Atg1 orchestrates autophagosome elongation via its phosphorylation activity. The data from our study will facilitate future studies on the noncanonical targets of Atg1 and help decipher the Atg1-mediated phosphorylation networks. IMPORTANCE Autophagy-related protein 1 (Atg1) is a serine/threonine protein kinase for autophagy initiation. In contrast to the unicellular yeast, the target proteins phosphorylated by Atg1 are largely unknown in filamentous fungi. In this study, the entomopathogenic fungus Beauveria bassiana was used as a representative of filamentous fungi due to its importance in the applied and fundamental research. We revealed that Atg1 mediates the comprehensive proteome and phosphoproteome, which differ from those revealed in yeast. Further investigation revealed that Atg1 directly phosphorylates the E2-like enzyme Atg3 of the ubiquitin-like conjugation system (ULCS), and the phosphorylation of Atg3 is indispensable for ULCS functionality. Interestingly, the phosphorylation site of Atg3 is conserved among a set of insect- and plant-pathogenic fungi but not in human-pathogenic fungi. This study reveals new regulatory mechanisms of autophagy and provides new insights into the evolutionary diversity of the Atg1 kinase signaling pathways among different pathogenic fungi.
引用
收藏
页数:20
相关论文
共 58 条
[21]   iProX: an integrated proteome resource [J].
Ma, Jie ;
Chen, Tao ;
Wu, Songfeng ;
Yang, Chunyuan ;
Bai, Mingze ;
Shu, Kunxian ;
Li, Kenli ;
Zhang, Guoqing ;
Jin, Zhong ;
He, Fuchu ;
Hermjakob, Henning ;
Zhu, Yunping .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D1211-D1217
[22]   ATG genes involved in non-selective autophagy are conserved from yeast to man, but the selective Cvt and pexophagy pathways also require organism-specific genes [J].
Meijer, Wiebe H. ;
van der Klei, Ida J. ;
Veenhuis, Marten ;
Kiel, Jan A. K. W. .
AUTOPHAGY, 2007, 3 (02) :106-116
[23]   Diverse Cellular Roles of Autophagy [J].
Morishita, Hideaki ;
Mizushima, Noboru .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, VOL 35, 2019, 35 :453-475
[24]  
Nadal M, 2010, MOL PLANT PATHOL, V11, P463, DOI [10.1111/J.1364-3703.2010.00620.X, 10.1111/j.1364-3703.2010.00620.x]
[25]  
Nakatogawa H, 2012, METHODS MOL BIOL, V832, P519, DOI 10.1007/978-1-61779-474-2_37
[26]   Early Steps in Autophagy Depend on Direct Phosphorylation of Atg9 by the Atg1 Kinase [J].
Papinski, Daniel ;
Schuschnig, Martina ;
Reiter, Wolfgang ;
Wilhelm, Larissa ;
Barnes, Christopher A. ;
Maiolica, Alessio ;
Hansmann, Isabella ;
Pfaffenwimmer, Thaddaeus ;
Kijanska, Monika ;
Stoffel, Ingrid ;
Lee, Sung Sik ;
Brezovich, Andrea ;
Lou, Jane Hua ;
Turk, Benjamin E. ;
Aebersold, Ruedi ;
Ammerer, Gustav ;
Peter, Matthias ;
Kraft, Claudine .
MOLECULAR CELL, 2014, 53 (03) :471-483
[27]   Genetic control of asexual sporulation in filamentous fungi [J].
Park, Hee-Soo ;
Yu, Jae-Hyuk .
CURRENT OPINION IN MICROBIOLOGY, 2012, 15 (06) :669-677
[28]   The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14 [J].
Park, Ji-Man ;
Jung, Chang Hwa ;
Seo, Minchul ;
Otto, Neil Michael ;
Grunwald, Douglas ;
Kim, Kwan Hyun ;
Moriarity, Branden ;
Kim, Young-Mi ;
Starker, Colby ;
Nho, Richard Seonghun ;
Voytas, Daniel ;
Kim, Do-Hyung .
AUTOPHAGY, 2016, 12 (03) :547-564
[29]   HapX, an Indispensable bZIP Transcription Factor for Iron Acquisition, Regulates Infection Initiation by Orchestrating Conidial Oleic Acid Homeostasis and Cytomembrane Functionality in Mycopathogen Beauveria bassiana [J].
Peng, Yue-Jin ;
Wang, Jia-Jia ;
Lin, Hai-Yan ;
Ding, Jin-Li ;
Feng, Ming-Guang ;
Ying, Sheng-Hua .
MSYSTEMS, 2020, 5 (05)
[30]   Wee1 and Cdc25 control morphogenesis, virulence and multistress tolerance of Beauveria bassiana by balancing cell cycle-required cyclin-dependent kinase 1 activity [J].
Qiu, Lei ;
Wang, Juan-Juan ;
Ying, Sheng-Hua ;
Feng, Ming-Guang .
ENVIRONMENTAL MICROBIOLOGY, 2015, 17 (04) :1119-1133