Chemical profiling and multivariate data fusion methods for the identification of the botanical origin of honey

被引:82
作者
Ballabio, Davide [1 ]
Robotti, Elisa [2 ]
Grisoni, Francesca [1 ]
Quasso, Fabio [2 ]
Bobba, Marco [2 ,3 ]
Vercelli, Serena [2 ]
Gosetti, Fabio [2 ]
Calabrese, Giorgio [4 ]
Sangiorgi, Emanuele [3 ]
Orlandi, Marco [1 ]
Marengo, Emilio [2 ]
机构
[1] Univ Milano Bicocca, Dept Earth & Environm Sci, Pzza Sci 1, I-20126 Milan, Italy
[2] Univ Piemonte Orientale, Dept Sci & Technol Innovat, Viale Michel 11, I-15121 Alessandria, Italy
[3] Ist Zooprofilatt Sperimentale Lombardia & Emilia, Via Bianchi 9, I-25124 Brescia, Italy
[4] Univ Napoli Federico II, Dept Pharmaceut & Toxicol Chem, Via Montesano 49, I-80131 Naples, Italy
关键词
Data fusion; Raman spectroscopy; NIR spectroscopy; PTR-ToF-MS; Honey; PLS-DA; NEAR-INFRARED SPECTROSCOPY; VOLATILE ORGANIC-COMPOUNDS; PARTIAL LEAST-SQUARES; GAS-CHROMATOGRAPHY; RAMAN-SPECTROSCOPY; MASS-SPECTROMETRY; ELECTRONIC NOSE; FT-RAMAN; PTR-MS; DISCRIMINATION;
D O I
10.1016/j.foodchem.2018.05.084
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
The characterization of 72 Italian honey samples from 8 botanical varieties was carried out by a comprehensive approach exploiting data fusion of IR, NIR and Raman spectroscopies, Proton Transfer Reaction - Time of Flight - Mass Spectrometry (PTR-MS) and electronic nose. High-, mid- and low-level data fusion approaches were tested to verify if the combination of several analytical sources can improve the classification ability of honeys from different botanical origins. Classification was performed on the fused data by Partial Least Squares Discriminant Analysis; a strict validation protocol was used to estimate the predictive performances of the models. The best results were obtained with high-level data fusion combining Raman and NIR spectroscopy and PTR-MS, with classification performances better than those obtained on single analytical sources (accuracy of 99% and 100% on test and training samples respectively). The combination of just three analytical sources assures a limited time of analysis.
引用
收藏
页码:79 / 89
页数:11
相关论文
共 40 条
[1]   Physicochethical characterization of Lavandula spp. honey with FT-Raman spectroscopy [J].
Anjos, Ofelia ;
Santos, Antonio J. A. ;
Paixao, Vasco ;
Estevinho, Leticia M. .
TALANTA, 2018, 178 :43-48
[2]  
[Anonymous], 2009, APPL SPECTROSC, DOI DOI 10.1366/000370210791114185
[3]   Assessing the varietal origin of extra-virgin olive oil using liquid chromatography fingerprints of phenolic compound, data fusion and chemometrics [J].
Bajoub, Aadil ;
Medina-Rodriguez, Santiago ;
Gomez-Romero, Maria ;
Ajal, El Amine ;
Gracia Bagur-Gonzalez, Maria ;
Fernandez-Gutierrez, Alberto ;
Carrasco-Pancorbo, Alegria .
FOOD CHEMISTRY, 2017, 215 :245-255
[4]   Qualitative consensus of QSAR ready biodegradability predictions [J].
Ballabio, Davide ;
Biganzoli, Fabrizio ;
Todeschini, Roberto ;
Consonni, Viviana .
TOXICOLOGICAL AND ENVIRONMENTAL CHEMISTRY, 2017, 99 (7-8) :1193-1216
[5]   Classification tools in chemistry. Part 1: linear models. PLS-DA [J].
Ballabio, Davide ;
Consonni, Viviana .
ANALYTICAL METHODS, 2013, 5 (16) :3790-3798
[6]   Partial least squares for discrimination [J].
Barker, M ;
Rayens, W .
JOURNAL OF CHEMOMETRICS, 2003, 17 (03) :166-173
[7]   A Bayesian Approach to Analyzing Ecotoxicological Data [J].
Billoir, Elise ;
Delignette-Muller, Marie Laure ;
Pery, Alexandre R. R. ;
Charles, Sandrine .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (23) :8978-8984
[8]   Data fusion methodologies for food and beverage authentication and quality assessment - A review [J].
Borras, Eva ;
Ferre, Joan ;
Boque, Ricard ;
Mestres, Montserrat ;
Acena, Laura ;
Busto, Olga .
ANALYTICA CHIMICA ACTA, 2015, 891 :1-14
[9]   On data analysis in PTR-TOF-MS: From raw spectra to data mining [J].
Cappellin, Luca ;
Biasioli, Franco ;
Granitto, Pablo M. ;
Schuhfried, Erna ;
Soukoulis, Christos ;
Costa, Fabrizio ;
Maerk, Tilmann D. ;
Gasperi, Flavia .
SENSORS AND ACTUATORS B-CHEMICAL, 2011, 155 (01) :183-190
[10]   Classification of Chinese honeys according to their floral origin by near infrared spectroscopy [J].
Chen, Lanzhen ;
Wang, Jiahua ;
Ye, Zhihua ;
Zhao, Jing ;
Xue, Xiaofeng ;
Vander Heyden, Yvan ;
Sun, Qian .
FOOD CHEMISTRY, 2012, 135 (02) :338-342