Large-Scale Multi-Domain Belief Tracking with Knowledge Sharing

被引:0
|
作者
Ramadan, Osman [1 ]
Budzianowski, Pawel [1 ]
Gasic, Milica [1 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge, England
来源
PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2 | 2018年
基金
英国工程与自然科学研究理事会;
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Robust dialogue belief tracking is a key component in maintaining good quality dialogue systems. The tasks that dialogue systems are trying to solve are becoming increasingly complex, requiring scalability to multi-domain, semantically rich dialogues. However, most current approaches have difficulty scaling up with domains because of the dependency of the model parameters on the dialogue ontology. In this paper, a novel approach is introduced that fully utilizes semantic similarity between dialogue utterances and the ontology terms, allowing the information to be shared across domains. The evaluation is performed on a recently collected multi-domain dialogues dataset, one order of magnitude larger than currently available corpora. Our model demonstrates great capability in handling multi-domain dialogues, simultaneously outperforming existing state-of-the-art models in single-domain dialogue tracking tasks.
引用
收藏
页码:432 / 437
页数:6
相关论文
共 50 条
  • [31] Secure Multi-domain Information Sharing in Tactical Networks
    Poltronieri, Filippo
    Campioni, Lorenzo
    Lenzi, Rita
    Morelli, Alessandro
    Suri, Niranjan
    Tortonesi, Mauro
    2018 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM 2018), 2018, : 648 - 653
  • [32] Resource information sharing in multi-domain optical grids
    Abouelela, Mohamed
    El-Darieby, Mohamed
    INTERNATIONAL JOURNAL OF GRID AND UTILITY COMPUTING, 2014, 5 (03) : 205 - 213
  • [33] Demonstration of SDN/OpenFlow-Based Path Control for Large-Scale Multi-Domain/Multi-Technology Optical Transport Networks
    Gao, Shan
    Cao, Xiaoyuan
    Sato, Takehiro
    Miyazawa, Takaya
    Yoshida, Sota
    Yoshikane, Noboru
    Tsuritani, Takehiro
    Harai, Hiroaki
    Okamoto, Satoru
    Yamanaka, Naoaki
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2016, E99B (07) : 1492 - 1500
  • [34] Altered interplay among large-scale brain functional networks underpins multi-domain anosognosia in early-AD
    Bermejo, Jose Manuel Valera
    De Marco, Matteo
    Venneri, Annalena
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 2021, 429
  • [35] MDU-sampling: Multi-domain uniform sampling method for large-scale outdoor LiDAR point cloud registration
    Ou, Wengjun
    Zheng, Mingkui
    Zheng, Haifeng
    ELECTRONICS LETTERS, 2024, 60 (05)
  • [36] Multi-scale and multi-domain computational astrophysics
    van Elteren, Arjen
    Pelupessy, Inti
    Zwart, Simon Portegies
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 372 (2021):
  • [37] Multi-domain Simulation Method for Large-scale AC/DC Systems Based on Time-Frequency Coordination Transform
    Song Z.
    Shu D.
    Yan Z.
    Luo X.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2020, 44 (05): : 130 - 137
  • [38] Multi-scale Region Proposal Network Trained by Multi-domain Learning for Visual Object Tracking
    Fang, Yang
    Ko, Seunghyun
    Jo, Geun-Sik
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT III, 2017, 10636 : 330 - 339
  • [39] Tracking Semantic Evolutionary Changes in Large-Scale Ontological Knowledge Bases
    Liu, Zhao
    Lu, Chang
    Alghamdi, Ghadah
    Schmidt, Renate A.
    Zhao, Yizheng
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 1130 - 1139
  • [40] MMpedia: A Large-Scale Multi-modal Knowledge Graph
    Wu, Yinan
    Wu, Xiaowei
    Li, Junwen
    Zhang, Yue
    Wang, Haofen
    Du, Wen
    He, Zhidong
    Liu, Jingping
    Ruan, Tong
    SEMANTIC WEB, ISWC 2023, PT II, 2023, 14266 : 18 - 37