Using Reinforcement Learning to Perform Qubit Routing in Quantum Compilers

被引:15
作者
Pozzi, Matteo G. [1 ]
Herbert, Steven J. [2 ]
Sengupta, Akash [3 ]
Mullins, Robert D. [1 ]
机构
[1] Univ Cambridge, Comp Lab, 15 JJ Thomson Ave, Cambridge CB3 0FD, England
[2] Univ Cambridge, Comp Lab, 15 JJ Thomson Ave, Cambridge CB3 0FD, England
[3] Univ Cambridge, Dept Engn, Trumpington St, Cambridge CB2 1PZ, England
来源
ACM TRANSACTIONS ON QUANTUM COMPUTING | 2022年 / 3卷 / 02期
关键词
qubit routing; qubit mapping; Q-learning; simulated annealing; qiskit; tket; quantum circuits; machine learning; deep learning; neural networks;
D O I
10.1145/3520434
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
"Qubit routing" refers to the task of modifying quantum circuits so that they satisfy the connectivity constraints of a target quantum computer. This involves inserting SWAP gates into the circuit so that the logical gates only ever occur between adjacent physical qubits. The goal is to minimise the circuit depth added by the SWAP gates. In this article, we propose a qubit routing procedure that uses a modified version of the deep Q-learning paradigm. The system is able to outperform the qubit routing procedures from two of the most advanced quantum compilers currently available (Qiskit and t|ket >), on both random and realistic circuits, across a range of near-term architecture sizes (with up to 50 qubits).
引用
收藏
页数:25
相关论文
共 43 条
  • [1] Almudever CG, 2017, DES AUT TEST EUROPE, P836, DOI 10.23919/DATE.2017.7927104
  • [2] [Anonymous], 2020, JANDURAS ROUTING MET
  • [3] [Anonymous], 2020, CQC OUR TECHNOLOGY
  • [4] [Anonymous], 2020, IBM QISKIT
  • [5] [Anonymous], 2018, QUANTUM CIRCUIT TEST
  • [6] [Anonymous], 2020, CIRQ DOCUMENTATION
  • [7] [Anonymous], 2018, IBM Q DEVICES SIMULA
  • [8] Quantum supremacy using a programmable superconducting processor
    Arute, Frank
    Arya, Kunal
    Babbush, Ryan
    Bacon, Dave
    Bardin, Joseph C.
    Barends, Rami
    Biswas, Rupak
    Boixo, Sergio
    Brandao, Fernando G. S. L.
    Buell, David A.
    Burkett, Brian
    Chen, Yu
    Chen, Zijun
    Chiaro, Ben
    Collins, Roberto
    Courtney, William
    Dunsworth, Andrew
    Farhi, Edward
    Foxen, Brooks
    Fowler, Austin
    Gidney, Craig
    Giustina, Marissa
    Graff, Rob
    Guerin, Keith
    Habegger, Steve
    Harrigan, Matthew P.
    Hartmann, Michael J.
    Ho, Alan
    Hoffmann, Markus
    Huang, Trent
    Humble, Travis S.
    Isakov, Sergei V.
    Jeffrey, Evan
    Jiang, Zhang
    Kafri, Dvir
    Kechedzhi, Kostyantyn
    Kelly, Julian
    Klimov, Paul V.
    Knysh, Sergey
    Korotkov, Alexander
    Kostritsa, Fedor
    Landhuis, David
    Lindmark, Mike
    Lucero, Erik
    Lyakh, Dmitry
    Mandra, Salvatore
    McClean, Jarrod R.
    McEwen, Matthew
    Megrant, Anthony
    Mi, Xiao
    [J]. NATURE, 2019, 574 (7779) : 505 - +
  • [9] Childs Andrew M., 2019, LEIBNIZ INT P INFORM, V135, DOI DOI 10.4230/LIPICS.TQC.2019.3
  • [10] Chow J., 2020, Quantum takes flight: Moving from laboratory demonstrations to building systems