Insights into the Li+ storage mechanism of TiC@C-TiO2 core-shell nanostructures as high performance anodes

被引:54
作者
Cao, Songjie [1 ]
Xue, Zhe [1 ]
Yang, Chengwu [1 ]
Qin, Jiaqian [2 ,3 ]
Zhang, Long [1 ]
Yu, Pengfei [1 ]
Wang, Shanmin [4 ]
Zhao, Yusheng [4 ]
Zhang, Xinyu [1 ]
Liu, Riping [1 ]
机构
[1] Yanshan Univ, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Peoples R China
[2] Chulalongkorn Univ, Met & Mat Sci Res Inst, Bangkok 10330, Thailand
[3] Chulalongkorn Univ, Res Unit Adv Mat Energy Storage, Bangkok, Thailand
[4] Southern Univ Sci Technol, Dept Phys, Shenzhen 518055, Guangdong, Peoples R China
基金
美国国家科学基金会;
关键词
Lithium-ion battery anode; Core-shell nanostructure; Titanium dioxide; Titanium carbide; First-principle calculation; LITHIUM ION BATTERIES; ENERGY-STORAGE; TIO2; NANOCOMPOSITE; CHALLENGES; NANOFIBERS; NANOSHEETS; ARRAYS;
D O I
10.1016/j.nanoen.2018.05.022
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Titanium carbide @ carbon-doped titanium dioxide (TiC@C-TiO2) core-shell nanostructures are designed, prepared and demonstrated for the application in lithium ion battery anode. Synthesis of these specific core-shell nanostructures is achieved via a facile, novel, and one-pot approach using oxidative growth of C-TiO2 onto TiC nanoparticles, which has a higher electrochemical activity than those of pure P25 and TiC nanoparticles. The core-shell nanostructured anodes exhibit a high lithium storage capacity (352.8 mAh g(-1) at 100 mA g(-1)), good rate capability (253.6 mAh g(-1) at 1 A g(-1), 158.1 mAh g(-1) at 10 A g(-1)), and outstanding cycle stability in lithium ion batteries (LIBs) (similar to 150 mAh g(-1) at 10 A g(-1) after 400 cycles), which is about 48 times and 7 times higher than that of TiO2 electrode (similar to 3.3 mAh g(-1) at 10 A g(-1)) and TiC (similar to 25 mAh g(-1) at 10 A g(-1)). According to the first-principle calculation, the ultrahigh capacity and cycle stability of the as-prepared anode is ascribed to the enhancement of Li+ absorption and diffusion ability through formation of C-TiO2 porous layer onto the conductive TiC particles. Moreover, the increase of electron density around the Fermi level is found to be mainly caused by the core-shell nanostructures. The results demonstrate that the presence of TiC plays an important role in providing high conductivity and the novel core-shell nanostructure can buffer the huge volume expansion and contraction during prolonged cycling, resulting in great potential applications in LIBs.
引用
收藏
页码:25 / 34
页数:10
相关论文
共 74 条
[1]   Titanium dioxide nanotubes (TNT) in energy and environmental applications: An overview [J].
Abdullah, M. ;
Kamarudin, S. K. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 76 :212-225
[2]   Investigations on the influence of Sm3+ion on the nano TiO2 matrix as the anode material for lithium ion batteries [J].
Abhilash, K. P. ;
Selvin, P. Christopher ;
Nalini, B. ;
Jose, Rajan ;
Vijayaraghavan, R. ;
Chowdari, B. V. R. ;
Adams, S. ;
Reddy, M. V. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 710 :205-215
[3]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[4]   Rutile growth mechanism on TiC monocrystals by oxidation [J].
Bellucci, A ;
Gozzi, D ;
Nardone, M ;
Sodo, A .
CHEMISTRY OF MATERIALS, 2003, 15 (05) :1217-1224
[5]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[6]   Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage [J].
Bonaccorso, Francesco ;
Colombo, Luigi ;
Yu, Guihua ;
Stoller, Meryl ;
Tozzini, Valentina ;
Ferrari, Andrea C. ;
Ruoff, Rodney S. ;
Pellegrini, Vittorio .
SCIENCE, 2015, 347 (6217)
[7]   Size Effects in the Li4+xTi5O12 Spinel [J].
Borghols, W. J. H. ;
Wagemaker, M. ;
Lafont, U. ;
Kelder, E. M. ;
Mulder, F. M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (49) :17786-17792
[8]   Templated Nanocrystal-Based Porous TiO2 Films for Next-Generation Electrochemical Capacitors [J].
Brezesinski, Torsten ;
Wang, John ;
Polleux, Julien ;
Dunn, Bruce ;
Tolbert, Sarah H. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (05) :1802-1809
[9]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[10]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/NMAT3191, 10.1038/nmat3191]