Conceptual design of a neutral beam heating & current drive system for DTT

被引:14
作者
Agostinetti, P. [1 ]
Bolzonella, T. [1 ]
Gobbin, M. [1 ]
Sonato, P. [1 ]
Spizzo, G. [1 ]
Vallar, M. [1 ]
Vincenzi, P. [1 ]
机构
[1] Univ Padua, Consorzio RFX, Acciaierie Venete SpA, CNR,ENEA,INFN, Corso Stati Uniti 4, I-35127 Padua, Italy
基金
欧盟地平线“2020”;
关键词
DTT; NBI; Conceptual; Design;
D O I
10.1016/j.fusengdes.2018.12.087
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The main purpose of the Divertor Tokamak Test (DTT) is to study solutions to mitigate the issue of power exhaust in conditions relevant for ITER and DEMO. The key feature of such a study is to equip the machine with a significant amount of auxiliary heating power (45 MW) in order to test different divertor solutions. According to the Italian project, the experiment is foreseen to operate with the following main parameters: B-T = 6 T, I-P= 5.5 MA, R-O= 2.1 m, a = 0.65 m and a pulse duration of 95 s. It shall be able to study different divertor magnetic configurations and reach a reactor relevant power flow to the divertor. The proposed mix of heating power foreseen to achieve the target value of 45 MW delivered to the plasma will be provided by Electron Cyclotron Resonant Heating (ECRH), Ion Cyclotron Resonant Heating (ICRH) and Negative-ion-based Neutral Beam Heating (NNBH). In this framework, the conceptual design of a NNBH system for DTT is here presented, with a particular focus on the technical solutions adopted to fulfil the requirements and maximize the performances. The proposed system features two beamlines providing deuterium negative ions (D-) with an energy not smaller than 300 keV and an injected power of 5-8 MW each. The design of the main components of the injectors is described in detail, explaining the motivations behind the main design choices and the related evaluations by means of physics and engineering simulations.
引用
收藏
页码:441 / 446
页数:6
相关论文
共 17 条
[1]   Detailed design optimization of the MITICA negative ion accelerator in view of the ITER NBI [J].
Agostinetti, P. ;
Aprile, D. ;
Antoni, V. ;
Cavenago, M. ;
Chitarin, G. ;
de Esch, H. P. L. ;
De Lorenzi, A. ;
Fonnesu, N. ;
Gambetta, G. ;
Hemsworth, R. S. ;
Kashiwagi, M. ;
Marconato, N. ;
Marcuzzi, D. ;
Pilan, N. ;
Sartori, E. ;
Serianni, G. ;
Singh, M. ;
Sonato, P. ;
Spada, E. ;
Toigo, V. ;
Veltri, P. ;
Zaccaria, P. .
NUCLEAR FUSION, 2016, 56 (01)
[2]   Physics and engineering design of the accelerator and electron dump for SPIDER [J].
Agostinetti, P. ;
Antoni, V. ;
Cavenago, M. ;
Chitarin, G. ;
Marconato, N. ;
Marcuzzi, D. ;
Pilan, N. ;
Serianni, G. ;
Sonato, P. ;
Veltri, P. ;
Zaccaria, P. .
NUCLEAR FUSION, 2011, 51 (06)
[3]   Investigation of the thermo-mechanical properties of electro-deposited copper for ITER [J].
Agostinetti, P. ;
Dalla Palma, M. ;
Dal Bello, S. ;
Heinemann, B. ;
Nocentini, R. ;
Zauner, C. ;
Langer, H. ;
Klammer, J. .
JOURNAL OF NUCLEAR MATERIALS, 2011, 417 (1-3) :924-927
[4]   Optics and Thermomechanical Analysis of the Accelerator for the DEMO Neutral Beam Injector [J].
Agostinetti, Piero ;
Sonato, Piergiorgio .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2018, 46 (05) :1648-1652
[5]   Manufacturing and Testing of Grid Prototypes for the ITER Neutral Beam Injectors [J].
Agostinetti, Piero ;
Chitarin, Giuseppe ;
Marconato, Nicolo ;
Marcuzzi, Diego ;
Rizzolo, Andrea .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2014, 42 (03) :628-632
[6]   DTT: a divertor tokamak test facility for the study of the power exhaust issues in view of DEMO [J].
Albanese, R. .
NUCLEAR FUSION, 2017, 57 (01)
[7]   Metis: a fast integrated tokamak modelling tool for scenario design [J].
Artaud, J. F. ;
Imbeaux, F. ;
Garcia, J. ;
Giruzzi, G. ;
Aniel, T. ;
Basiuk, V ;
Becoulet, A. ;
Bourdelle, C. ;
Buravand, Y. ;
Decker, J. ;
Dumont, R. ;
Eriksson, L. G. ;
Garbet, X. ;
Guirlet, R. ;
Hoang, G. T. ;
Huynh, P. ;
Joffrin, E. ;
Litaudon, X. ;
Maget, P. ;
Moreau, D. ;
Nouailletas, R. ;
Pegourie, B. ;
Peysson, Y. ;
Schneide, M. ;
Urban, J. .
NUCLEAR FUSION, 2018, 58 (10)
[8]   The DTT device: Rationale for the choice of the parameters [J].
Crisanti, F. ;
Albanese, R. ;
Ambrosino, R. ;
Calabro, G. ;
Duval, B. ;
Giruzzi, G. ;
Granucci, G. ;
Maddaluno, G. ;
Ramogida, G. ;
Reimerdes, H. ;
Zagorski, R. .
FUSION ENGINEERING AND DESIGN, 2017, 122 :288-298
[9]   DEMO design activity in Europe: Progress and updates [J].
Federici, G. ;
Bachmann, C. ;
Barucca, L. ;
Biel, W. ;
Boccaccini, L. ;
Brown, R. ;
Bustreo, C. ;
Ciattaglia, S. ;
Cismondi, F. ;
Coleman, M. ;
Corato, V. ;
Day, C. ;
Diegele, E. ;
Fischer, U. ;
Franke, T. ;
Gliss, C. ;
Ibarra, A. ;
Kembleton, R. ;
Loving, A. ;
Maviglia, F. ;
Meszaros, B. ;
Pintsuk, G. ;
Taylor, N. ;
Tran, M. Q. ;
Vorpahl, C. ;
Wenninger, R. ;
You, J. H. .
FUSION ENGINEERING AND DESIGN, 2018, 136 :729-741
[10]   The DTT device: System for heating [J].
Granucci, G. ;
Ceccuzzi, S. ;
Giruzzi, G. ;
Sonato, P. ;
Agostinetti, P. ;
Bolzonella, T. ;
Bruschi, A. ;
Cardinali, A. ;
Figini, L. ;
Garavaglia, S. ;
Maggiora, R. ;
Milanesio, D. ;
Mirizzi, F. ;
Nowak, S. ;
Ravera, G. L. ;
Sozzi, C. ;
Tuccillo, A. A. ;
Vincenzi, P. .
FUSION ENGINEERING AND DESIGN, 2017, 122 :349-355