Improved order 1/4 convergence for piecewise constant policy approximation of stochastic control problems

被引:9
作者
Jakobsen, Espen R. [1 ]
Picarelli, Athena [2 ]
Reisinger, Christoph [3 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, Norway
[2] Univ Verona, Dept Econ, Via Cantarane 24, I-37129 Verona, Italy
[3] Univ Oxford, Math Inst, Andrew Wiles Bldg, Oxford OX2 6GG, England
关键词
optimal control; Bellman's equation; error estimates; piecewise constant policies; ERROR-BOUNDS; SCHEMES;
D O I
10.1214/19-ECP256
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In N. V Krylov, Approximating value functions for controlled degenerate diffusion processes by using piece-wise constant policies, Electron. J. Probab., 4(2), 1999, it is proved under standard assumptions that the value functions of controlled diffusion processes can be approximated with order 1/6 error by those with controls which are constant on uniform time intervals. In this note we refine the proof and show that the provable rate can be improved to 1/4, which is optimal in our setting. Moreover, we demonstrate the improvements this implies for error estimates derived by similar techniques for approximation schemes, bringing these in line with the best available results from the PDE literature.
引用
收藏
页数:10
相关论文
共 13 条
[1]  
[Anonymous], 1995, Applied mathematical finance
[2]  
[Anonymous], 1999, ELECTRON J PROBAB
[3]   Error bounds for monotone approximation schemes for Hamilton-Jacobi-Bellma equations [J].
Barles, G ;
Jakobsen, ER .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (02) :540-558
[4]   On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations [J].
Barles, G ;
Jakobsen, ER .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2002, 36 (01) :33-54
[5]   Error bounds for monotone approximation schemes for parabolic Hamilton-Jacobi-Bellman equations [J].
Barles, Guy ;
Jakobsen, Espen R. .
MATHEMATICS OF COMPUTATION, 2007, 76 (260) :1861-1893
[6]   AN APPROXIMATION SCHEME FOR THE OPTIMAL-CONTROL OF DIFFUSION-PROCESSES [J].
CAMILLI, F ;
FALCONE, M .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1995, 29 (01) :97-122
[7]  
Debrabant K, 2013, MATH COMPUT, V82, P1433
[8]  
Dumitrescu R., 2019, APPL MATH OPTIM
[9]   Modifications of the PCPT Method for HJB Equations [J].
Kossaczky, I. ;
Ehrhardt, M. ;
Guenther, M. .
APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES (AMITANS'16), 2016, 1773
[10]   On the rate of convergence of finite-difference approximations for Bellman's equations with variable coefficients [J].
Krylov, NV .
PROBABILITY THEORY AND RELATED FIELDS, 2000, 117 (01) :1-16