A note on boundary layer effects in periodic homogenization with dirichlet boundary conditions

被引:3
作者
Amar, M [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Metodi & Modelli Matemat, I-00161 Rome, Italy
关键词
boundary layers; periodic functions; asymptotic expansion; and homogenization;
D O I
10.3934/dcds.2000.6.537
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper focus on the properties of boundary layers in periodic homogenization of Dirichlet boundary value problems. We consider here the case of Dirichlet problems in rectangular domains which have an oscillating boundary, emphasizing the influence of boundary layers on interior error estimates.
引用
收藏
页码:537 / 556
页数:20
相关论文
共 23 条
[1]  
ABBOUD T, 1994, CR ACAD SCI I-MATH, V319, P371
[2]  
ACHDOU Y, 1992, CR ACAD SCI I-MATH, V314, P217
[3]  
ACHDOU Y, 1995, CR ACAD SCI I-MATH, V320, P541
[4]  
ACHDOU Y, 1996, P INT C NONL DIFF EQ, P19
[5]   Homogenization of a spectral equation in neutron transport [J].
Allaire, G ;
Bal, G .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (09) :1043-1048
[6]  
Allaire G., 1999, ESAIM CONTR OPTIM CA, V4, P209
[7]   SOLUTION OF INTERFACE PROBLEMS BY HOMOGENIZATION-III [J].
BABUSKA, I .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1977, 8 (06) :923-937
[8]   SOLUTION OF INTERFACE PROBLEMS BY HOMOGENIZATION .1. [J].
BABUSKA, I .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1976, 7 (05) :603-634
[9]  
BABUSKA I, 1976, SIAM J MATH ANAL, V7, P635, DOI 10.1137/0507049
[10]  
BAKHVALOV N, 1990, MATH ITS APPL, V36