Soil Moisture Content Estimation Based on Sentinel-1 and Auxiliary Earth Observation Products. A Hydrological Approach

被引:101
作者
Alexakis, Dimitrios D. [1 ]
Mexis, Filippos-Dimitrios K. [1 ]
Vozinaki, Anthi-Eirini K. [1 ]
Daliakopoulos, Ioannis N. [1 ]
Tsanis, Ioannis K. [1 ]
机构
[1] Tech Univ Crete, Sch Environm Engn, Khania 73100, Greece
关键词
soil moisture content; Sentinel-1; Landsat; 8; artificial neural network; HEC-HMS; Crete; REMOTE-SENSING DATA; EMPIRICAL-MODEL; WATER CONTENT; RADAR DATA; SAR DATA; RETRIEVAL; ALGORITHM; IDENTIFICATION; INTEGRATION; CALIBRATION;
D O I
10.3390/s17061455
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A methodology for elaborating multi-temporal Sentinel-1 and Landsat 8 satellite images for estimating topsoil Soil Moisture Content (SMC) to support hydrological simulation studies is proposed. After pre-processing the remote sensing data, backscattering coefficient, Normalized Difference Vegetation Index (NDVI), thermal infrared temperature and incidence angle parameters are assessed for their potential to infer ground measurements of SMC, collected at the top 5 cm. A non-linear approach using Artificial Neural Networks (ANNs) is tested. The methodology is applied in Western Crete, Greece, where a SMC gauge network was deployed during 2015. The performance of the proposed algorithm is evaluated using leave-one-out cross validation and sensitivity analysis. ANNs prove to be the most efficient in SMC estimation yielding R-2 values between 0.7 and 0.9. The proposed methodology is used to support a hydrological simulation with the HEC-HMS model, applied at the Keramianos basin which is ungauged for SMC. Results and model sensitivity highlight the contribution of combining Sentinel-1 SAR and Landsat 8 images for improving SMC estimates and supporting hydrological studies.
引用
收藏
页数:16
相关论文
共 63 条
[1]   The Importance of Accounting for Atmospheric Effects in the Application of NDVI and Interpretation of Satellite Imagery Supporting Archaeological Research: The Case Studies of Palaepaphos and Nea Paphos Sites in Cyprus [J].
Agapiou, Athos ;
Hadjimitsis, Diofantos G. ;
Papoutsa, Christiana ;
Alexakis, Dimitrios D. ;
Papadavid, George .
REMOTE SENSING, 2011, 3 (12) :2605-2629
[2]   Estimating soil moisture using remote sensing data: A machine learning approach [J].
Ahmad, Sajjad ;
Kalra, Ajay ;
Stephen, Haroon .
ADVANCES IN WATER RESOURCES, 2010, 33 (01) :69-80
[3]   Integrated GIS and remote sensing analysis for landfill sitting in Western Crete, Greece [J].
Alexakis, Dimitrios D. ;
Sarris, Apostolos .
ENVIRONMENTAL EARTH SCIENCES, 2014, 72 (02) :467-482
[4]  
[Anonymous], HYDROL EARTH SYST SC
[5]  
[Anonymous], HYDROL EARTH SYST SC, DOI [10.5194/hessd-9-1-2012, DOI 10.5194/HESSD-9-1-2012]
[6]  
Baghdadi N, 2002, INT GEOSCI REMOTE SE, P2646, DOI 10.1109/IGARSS.2002.1026729
[7]   Operational mapping of soil moisture using synthetic aperture radar data:: Application to the touch basin (France) [J].
Baghdadi, Nicolas ;
Aubert, Maelle ;
Cerdan, Olivier ;
Franchisteguy, Laurent ;
Viel, Christian ;
Martin, Eric ;
Zribi, Mehrez ;
Desprats, Jean Francois .
SENSORS, 2007, 7 (10) :2458-2483
[8]   SMOSAR ALGORITHM FOR SOIL MOISTURE RETRIEVAL USING SENTINEL-1 DATA [J].
Balenzano, Anna ;
Mattia, Francesco ;
Satalino, Giuseppe ;
Pauwels, Valentijn ;
Snoeij, Paul .
2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, :1200-1203
[9]   Evaluation of the Oh, Dubois and IEM Backscatter Models Using a Large Dataset of SAR Data and Experimental Soil Measurements [J].
Choker, Mohammad ;
Baghdadi, Nicolas ;
Zribi, Mehrez ;
El Hajj, Mohammad ;
Paloscia, Simonetta ;
Verhoest, Niko E. C. ;
Lievens, Hans ;
Mattia, Francesco .
Water, 2017, 9 (01)
[10]   Precision and accuracy of three alternative instruments for measuring soil water content in two forest soils of the Pacific Northwest [J].
Czarnomski, N ;
Moore, GW ;
Pypker, TG ;
Licata, J ;
Bond, BJ .
CANADIAN JOURNAL OF FOREST RESEARCH-REVUE CANADIENNE DE RECHERCHE FORESTIERE, 2005, 35 (08) :1867-1876