Deformation rate controls atomic-scale dynamic strain aging and phase transformation in high Mn TRIP steels

被引:55
作者
Seol, J. B. [1 ]
Kim, J. G. [2 ]
Na, S. H. [2 ]
Park, C. G. [1 ,2 ]
Kim, H. S. [2 ,3 ]
机构
[1] POSTECH, NINT, Pohang 37673, South Korea
[2] POSTECH, Dept Mat Sci & Engn, Pohang 37673, South Korea
[3] POSTECH, Ctr High Entropy Alloys, Pohang 37673, South Korea
关键词
Dynamic strain aging; Short-range ordering; Strain rate; Phase transformation; High Mn steel; PROBE TOMOGRAPHY; MARTENSITIC-TRANSFORMATION; MECHANICAL-PROPERTIES; CARBON DISTRIBUTION; SOLID-SOLUTIONS; AUSTENITE; PORTEVIN; MICROSTRUCTURE; STRENGTH; ENERGY;
D O I
10.1016/j.actamat.2017.03.076
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Dynamic strain aging (DSA) in engineering metallic alloys triggers a degradation of the relevant properties of these material. Atomic-scale understanding of DSA is essential for achieving strong and ductile high-Mn martensitic-austenitic transformation induced plasticity (TRIP) steels. Using multiple-scale analytical techniques, we report the influence of carbon addition and strain rates on the mechanical properties and associated deformation-induced phase transformation of these steels. Specific attention is also placed on the origin of DSA at the atomic scale. We find that controlling these parameters (carbon and strain rate) can be used to manipulate the room temperature reverse transformation from martensite to austenite, plastic instability, short-range ordering (SRO), TRIP effect, and strain hardening of these steels. Thus, our results demonstrate that the SRO caused by short-range clustering (SRC) is linked to the DSA, and that high-strain-rate deformation induces an increase in the carbon concentration of SRC, leading to the DSA suppression. Hence, we suggest that manipulating phase transformation and DSA is utilized to achieve strong and ductile steels with continuous and stable flow. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:187 / 196
页数:10
相关论文
共 35 条
[1]   Dynamic strain aging studied at the atomic scale [J].
Aboulfadl, H. ;
Deges, J. ;
Choi, P. ;
Raabe, D. .
ACTA MATERIALIA, 2015, 86 :34-42
[2]   High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships [J].
Bouaziz, O. ;
Allain, S. ;
Scott, C. P. ;
Cugy, P. ;
Barbier, D. .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2011, 15 (04) :141-168
[3]   Localized deformation due to Portevin-LeChatelier effect in 18Mn-0.6C TWIP austenitic steel [J].
Chen, Lei ;
Kim, Han-Soo ;
Kim, Sung-Kyu ;
De Cooman, B. C. .
ISIJ INTERNATIONAL, 2007, 47 (12) :1804-1812
[4]   SOME ASPECTS OF SERRATED YIELDING IN SUBSTITUTIONAL SOLID-SOLUTIONS OF IRON [J].
CUDDY, LJ ;
LESLIE, WC .
ACTA METALLURGICA, 1972, 20 (10) :1157-&
[5]   Chemical gradients across phase boundaries between martensite and austenite in steel studied by atom probe tomography and simulation [J].
Dmitrieva, O. ;
Ponge, D. ;
Inden, G. ;
Millan, J. ;
Choi, P. ;
Sietsma, J. ;
Raabe, D. .
ACTA MATERIALIA, 2011, 59 (01) :364-374
[6]   ACCELERATED GROWTH OF TIN WHISKERS [J].
FISHER, RM ;
DARKEN, LS ;
CARROLL, KG .
ACTA METALLURGICA, 1954, 2 (03) :368-&
[7]   SOLUTE HARDENING OF CLOSE-PACKED SOLID SOLUTIONS [J].
FLINN, PA .
ACTA METALLURGICA, 1958, 6 (10) :631-635
[8]   Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes [J].
Frommeyer, G ;
Brüx, U ;
Neumann, P .
ISIJ INTERNATIONAL, 2003, 43 (03) :438-446
[9]   Advances in the reconstruction of atom probe tomography data [J].
Gault, B. ;
Haley, D. ;
de Geuser, F. ;
Moody, M. P. ;
Marquis, B. A. ;
Larson, D. J. ;
Geiser, B. P. .
ULTRAMICROSCOPY, 2011, 111 (06) :448-457
[10]  
Gault B., 2012, Atom Probe Microscopy, V160