Properties of total domination edge-critical graphs

被引:7
作者
Henning, Michael A. [2 ]
van der Merwe, Lucas C. [1 ]
机构
[1] Univ Tennessee, Dept Math, Chattanooga, TN 37403 USA
[2] Univ KwaZulu Natal, Sch Math Sci, ZA-3209 Pietermaritzburg, South Africa
基金
新加坡国家研究基金会;
关键词
Total domination; Edge critical; Bounds; Diameter; 3-DOMINATION-CRITICAL GRAPHS; DIAMETER; HAMILTONICITY; RESPECT;
D O I
10.1016/j.dam.2009.09.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number gamma(t)(G) of G. The graph G is total domination edge critical if for every edge e in the complement of G, gamma(t)(G + e) < gamma(t)(G). We call such graphs gamma tEC. Properties of gamma tEC graphs are established. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:147 / 153
页数:7
相关论文
共 34 条
[1]  
[Anonymous], AUSTRALAS J COMBIN
[2]  
[Anonymous], C NUMER
[3]   Bicritical domination [J].
Brigham, RC ;
Haynes, TW ;
Henning, MA ;
Rall, DF .
DISCRETE MATHEMATICS, 2005, 305 (1-3) :18-32
[4]   DIAMETER CRITICAL GRAPHS [J].
CACCETTA, L ;
HAGGKVIST, R .
DISCRETE MATHEMATICS, 1979, 28 (03) :223-229
[5]  
Chen YJ, 2002, UTILITAS MATHEMATICA, V61, P239
[6]   TOTAL DOMINATION IN GRAPHS [J].
COCKAYNE, EJ ;
DAWES, RM ;
HEDETNIEMI, ST .
NETWORKS, 1980, 10 (03) :211-219
[7]  
EDWARDS M, 2006, THESIS U VICTORIA
[8]   ON DIAMETER 2-CRITICAL GRAPHS [J].
FAN, G .
DISCRETE MATHEMATICS, 1987, 67 (03) :235-240
[9]   THE DIAMETER OF DOMINATION K-CRITICAL GRAPHS [J].
FAVARON, O ;
SUMNER, DP ;
WOJCICKA, E .
JOURNAL OF GRAPH THEORY, 1994, 18 (07) :723-734
[10]  
Favaron O, 1997, J GRAPH THEOR, V25, P173, DOI 10.1002/(SICI)1097-0118(199707)25:3<173::AID-JGT1>3.0.CO