Efficient Reverse Converter Designs for the New 4-Moduli Sets {2n-1, 2n, 2n+1, 22n+1-1} and {2n-1, 2n+1, 22n, 22n+1} Based on New CRTs

被引:86
|
作者
Molahosseini, Amir Sabbagh [1 ]
Navi, Keivan [2 ]
Dadkhah, Chitra [3 ]
Kavehei, Omid [4 ]
Timarchi, Somayeh [2 ]
机构
[1] Islamic Azad Univ, Dept Comp Engn, Sci & Res Branch, Tehran 1477893855, Iran
[2] Shahid Beheshti Univ, Dept Elect & Comp Engn, GC, Tehran 1983963113, Iran
[3] KN Toosi Univ Technol, Dept Elect Engn, Tehran 1969764499, Iran
[4] Univ Adelaide, Sch Elect & Elect Engn, Ctr High Performance Integrated Technol & Syst, Adelaide, SA 5005, Australia
关键词
Computer arithmetic; new Chinese remainder theorems (New CRTs); residue arithmetic; reverse converter; residue number system (RNS); TO-BINARY CONVERTER; HIGH-SPEED; NUMBER SYSTEM; RESIDUE; RNS; 2(N+1)-1;
D O I
10.1109/TCSI.2009.2026681
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we introduce two new 4-moduli sets {2(n)-1, 2(n), 2(n)+1, 2(2n+1)-1} and {2(n)-1, 2(n)+1, 2(2n), 2(2n)+1} for developing efficient large dynamic range (DR) residue number systems (RNS). These moduli sets consist of simple and well-formed moduli which can result in efficient implementation of the reverse converter as well as internal RNS arithmetic circuits. The moduli set {2(n) - 1, 2(n), 2(n) + 1, 2(2n+1) - 1} has 5n-bit DR and it can result in a fast RNS arithmetic unit, while the 6n-bit DR moduli set {2(n) - 1, 2(n) + 1, 2(2n), 2(2n) + 1} is a conversion friendly moduli set which can lead to a high-speed and low-cost reverse converter design. Next, efficient reverse converters for the proposed moduli sets based on new Chinese remainder theorems (New CRTs) are presented. The converter for the moduli set {2(n) - 1,2(n), 2(n) + 1, 2(2n+1) - 1} is derived by New CRT-II with better performance compared to the reverse converter for the latest introduced 5n-bit DR moduli set {2(n) - 1, 2(n), 2(n) + 1, 2(2n-1) - 1}. Also, New CRT-I is used to achieve a high-performance reverse converter for the moduli set {2(n) - 1, 2(n) + 1, 2(2n), 2(2n) + 1}. This converter has less conversion delay and lower hardware requirements than the reverse converter for a recently suggested 6n-bit DR moduli set {2(n) - 1, 2(n) + 1, 2(2n) - 2, 2(2n+1) - 3}
引用
收藏
页码:823 / 835
页数:13
相关论文
共 50 条
  • [21] Efficient Reverse Converters for 4-Moduli Sets {22n-1 - 1,2n,2n + 1,2n - 1} and {22n-1,22n-1 - 1,2n + 1,2n - 1} Based on CRTs Algorithm
    Noorimehr, Mohammad Reza
    Hosseinzadeh, Mehdi
    Navi, Keivan
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2014, 33 (10) : 3145 - 3163
  • [22] Fully parallel comparator for the moduli set {2n, 2n-1, 2n+1}
    Eivazi, Shiva Taghipour
    Hosseinzadeh, Mehdi
    Mirmotahari, Omid
    IEICE ELECTRONICS EXPRESS, 2011, 8 (12): : 897 - 901
  • [23] RESIDUE-WEIGHTED NUMBER CONVERSION FOR MODULI SET {2n-1, 2n+1, 22n+1, 2n} USING SIGNED-DIGIT NUMBER
    Jiang, Changjun
    Wei, Shugang
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2013, 22 (01)
  • [24] Reverse converters for a new moduli set {22n-1, 2n, 22n+1}
    Mohan, P. V. Ananda
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2007, 26 (02) : 215 - 227
  • [25] Reverse Converters for the Moduli Set {{2n, 2n-1-1, 2n-1, 2n+1-1}( n Even)
    Mohan, P. V. Ananda
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2018, 37 (08) : 3605 - 3634
  • [26] High-performance Reverse Converter Design for the New Four-moduli Set {22n, 2n+1, 2n/2+1, 2n/2-1}
    Siao, Siang-Min
    Sheu, Ming-Hwa
    Wang, Shao-Yu
    2017 IEEE CONFERENCE ON DEPENDABLE AND SECURE COMPUTING, 2017, : 38 - 39
  • [27] An Efficient Reverse Converter for the Three-Moduli Set (2n+1-1, 2n, 2n-1)
    Hiasat, Ahmad
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2017, 64 (08) : 962 - 966
  • [28] On the Design of RNS Reverse Converters for the Four-Moduli Set {2n+1, 2n-1, 2n, 2n+1+1}
    Sousa, Leonel
    Antao, Samuel
    Chaves, Ricardo
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2013, 21 (10) : 1945 - 1949
  • [29] Efficient RNS to binary converters for the new 4-moduli set {2n, 2n+1-1, 2n-1, 2n-1-1}
    Esmaeildoust, Mohammad
    Navi, Keivan
    Taheri, MohammadReza
    Molahosseini, Amir Sabbagh
    Khodambashi, Siavash
    IEICE ELECTRONICS EXPRESS, 2012, 9 (01): : 1 - 7
  • [30] An Effective New CRT Based Reverse Converter for a Novel Moduli Set {22n+1-1, 22n+1,22n-1}
    Bankas, Edem Kwedzo
    Gbolagade, Kazeem Alagbe
    Cotofana, Sorin Dan
    PROCEEDINGS OF THE 2013 IEEE 24TH INTERNATIONAL CONFERENCE ON APPLICATION-SPECIFIC SYSTEMS, ARCHITECTURES AND PROCESSORS (ASAP 13), 2013, : 142 - 146