Efficient Reverse Converter Designs for the New 4-Moduli Sets {2n-1, 2n, 2n+1, 22n+1-1} and {2n-1, 2n+1, 22n, 22n+1} Based on New CRTs

被引:86
作者
Molahosseini, Amir Sabbagh [1 ]
Navi, Keivan [2 ]
Dadkhah, Chitra [3 ]
Kavehei, Omid [4 ]
Timarchi, Somayeh [2 ]
机构
[1] Islamic Azad Univ, Dept Comp Engn, Sci & Res Branch, Tehran 1477893855, Iran
[2] Shahid Beheshti Univ, Dept Elect & Comp Engn, GC, Tehran 1983963113, Iran
[3] KN Toosi Univ Technol, Dept Elect Engn, Tehran 1969764499, Iran
[4] Univ Adelaide, Sch Elect & Elect Engn, Ctr High Performance Integrated Technol & Syst, Adelaide, SA 5005, Australia
关键词
Computer arithmetic; new Chinese remainder theorems (New CRTs); residue arithmetic; reverse converter; residue number system (RNS); TO-BINARY CONVERTER; HIGH-SPEED; NUMBER SYSTEM; RESIDUE; RNS; 2(N+1)-1;
D O I
10.1109/TCSI.2009.2026681
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we introduce two new 4-moduli sets {2(n)-1, 2(n), 2(n)+1, 2(2n+1)-1} and {2(n)-1, 2(n)+1, 2(2n), 2(2n)+1} for developing efficient large dynamic range (DR) residue number systems (RNS). These moduli sets consist of simple and well-formed moduli which can result in efficient implementation of the reverse converter as well as internal RNS arithmetic circuits. The moduli set {2(n) - 1, 2(n), 2(n) + 1, 2(2n+1) - 1} has 5n-bit DR and it can result in a fast RNS arithmetic unit, while the 6n-bit DR moduli set {2(n) - 1, 2(n) + 1, 2(2n), 2(2n) + 1} is a conversion friendly moduli set which can lead to a high-speed and low-cost reverse converter design. Next, efficient reverse converters for the proposed moduli sets based on new Chinese remainder theorems (New CRTs) are presented. The converter for the moduli set {2(n) - 1,2(n), 2(n) + 1, 2(2n+1) - 1} is derived by New CRT-II with better performance compared to the reverse converter for the latest introduced 5n-bit DR moduli set {2(n) - 1, 2(n), 2(n) + 1, 2(2n-1) - 1}. Also, New CRT-I is used to achieve a high-performance reverse converter for the moduli set {2(n) - 1, 2(n) + 1, 2(2n), 2(2n) + 1}. This converter has less conversion delay and lower hardware requirements than the reverse converter for a recently suggested 6n-bit DR moduli set {2(n) - 1, 2(n) + 1, 2(2n) - 2, 2(2n+1) - 3}
引用
收藏
页码:823 / 835
页数:13
相关论文
共 33 条
[1]   Efficient reverse converters for four-moduli sets {2n-1, 2n, 2n+1, 2n+1-1} and {2n-1, 2n, 2n+1, 2n-1-1} [J].
Cao, B ;
Srikanthan, T ;
Chang, CH .
IEE PROCEEDINGS-COMPUTERS AND DIGITAL TECHNIQUES, 2005, 152 (05) :687-696
[2]   An efficient reverse converter for the 4-moduli set {2n-1, 2n, 2n+1, 22n+1} based on the new Chinese remainder theorem [J].
Cao, B ;
Chang, CH ;
Srikanthan, T .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2003, 50 (10) :1296-1303
[3]   A residue-to-binary converter for a new five-moduli set [J].
Cao, Bin ;
Chang, Chip-Hong ;
Srikanthan, Thambipillai .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2007, 54 (05) :1041-1049
[4]  
Cardarilli GC, 2007, CONFERENCE RECORD OF THE FORTY-FIRST ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1-5, P1412
[5]  
Conway R, 2004, IEEE T CIRCUITS-II, V51, P26, DOI [10.1109/TCSII.2003.821524, 10.1109/tcsii.2003.821524]
[6]   Fast parallel-prefix modulo 2n+1 adders [J].
Efstathiou, C ;
Vergos, HT ;
Nikolos, D .
IEEE TRANSACTIONS ON COMPUTERS, 2004, 53 (09) :1211-1216
[7]   Multiple error detection and correction based on redundant residue number systems [J].
Goh, Vik Tor ;
Siddiqi, Mohammad Umar .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2008, 56 (03) :325-330
[8]   A new high dynamic range moduli set with efficient reverse converter [J].
Hariri, Arash ;
Navi, Keivan ;
Rastegar, Reza .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (04) :660-668
[9]   Residue number system to binary converter for the moduli set (2n-1, 2n-1, 2n+1) [J].
Hiasat, A ;
Sweidan, A .
JOURNAL OF SYSTEMS ARCHITECTURE, 2003, 49 (1-2) :53-58
[10]   VLSI implementation of new arithmetic residue to binary decoders [J].
Hiasat, AA .
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2005, 13 (01) :153-158