Volumetric Velocimetry of Complex Geometry Effects on Transonic Flow over Cavities

被引:8
作者
DeMauro, Edward P. [1 ,3 ]
Beresh, Steven J. [2 ]
Casper, Katya M. [2 ]
Wagner, Justin L. [2 ]
Henfling, John F. [2 ]
Spillers, Russell W. [2 ]
机构
[1] Sandia Natl Labs, Albuquerque, NM 87185 USA
[2] Sandia Natl Labs, Engn Sci Ctr, Albuquerque, NM 87185 USA
[3] State Univ New Jersey, Rutgers Univ, Dept Mech & Aerosp Engn, 98 Brett Rd, Piscataway, NJ 08854 USA
基金
美国能源部;
关键词
RECTANGULAR CAVITY; 3-DIMENSIONAL FLOW; SUPPRESSION; RESONANCE; VELOCITY;
D O I
10.2514/1.J057714
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Volumetric measurements of the flow within four cavities were made by scanning stereoscopic particle image velocimetry at a freestream Mach number of 0.8. The cavities have a length-to-depth ratio L/D = 7, and a width-to-length ratio b/L = 0.5. Three complex cavity geometries are used to model features representative of real aircraft bays and compare them to a simple rectangular cavity. The rectangular configuration exhibits signs of a transitional cavity regime, with resonant tones that compare well with predicted Rossiter values. The addition of a leading-edge ramp lofts the cavity mixing layer and accelerates the cavity freestream, resulting in reduced Rossiter amplitudes and increased frequencies. Side-wall spillage vortices are present in the rectangular cavity but are not found after the addition of side ramps that lessen the pressure gradient forming them. A center scoop causes a spanwise variation of velocity characteristics within the flowfield. Finally, a jagged leading edge attached to the scooped case results in reduced velocity fluctuations with an increased Rossiter mode-2 amplitude.
引用
收藏
页码:1941 / 1954
页数:14
相关论文
共 46 条
  • [1] Ahuja K, 1995, 4653 NASA CR
  • [2] Arunajatesan S., 2014, 32 AIAA APPL AER C A, DOI [10.2514/6.2014-3027, DOI 10.2514/6.2014-3027]
  • [3] Pressure Loadings in a Rectangular Cavity with and Without a Captive Store
    Barone, Matthew
    Arunajatesan, Srinivasan
    [J]. JOURNAL OF AIRCRAFT, 2016, 53 (04): : 982 - 991
  • [4] Spatial Distribution of Resonance in the Velocity Field for Transonic Flow over a Rectangular Cavity
    Beresh, Steven J.
    Wagner, Justin L.
    Casper, Katya M.
    DeMauro, Edward P.
    Henfling, John F.
    Spillers, Russell W.
    [J]. AIAA JOURNAL, 2017, 55 (12) : 4203 - 4218
  • [5] Width Effects in Transonic Flow over a Rectangular Cavity
    Beresh, Steven J.
    Wagner, Justin L.
    Henfling, John F.
    Spillers, Russell W.
    Pruett, Brian O. M.
    [J]. AIAA JOURNAL, 2015, 53 (12) : 3832 - 3835
  • [6] Supersonic Flow over a Finite-Width Rectangular Cavity
    Beresh, Steven J.
    Wagner, Justin L.
    Pruett, Brian O. M.
    Henfling, John F.
    Spillers, Russell W.
    [J]. AIAA JOURNAL, 2015, 53 (02) : 296 - 310
  • [7] Casper K. M., 2016, 20163315 AIAA, DOI DOI 10.2514/6.2016-3315
  • [8] Complex Geometry Effects on Cavity Resonance
    Casper, Katya M.
    Wagner, Justin L.
    Beresh, Steven J.
    Henfling, John F.
    Spillers, Russell W.
    Pruett, Brian O. M.
    [J]. AIAA JOURNAL, 2016, 54 (01) : 320 - 330
  • [9] Active control of flow-induced cavity oscillations
    Cattafesta, Louis N., III
    Song, Qi
    Williams, David R.
    Rowley, Clarence W.
    Alvi, Farrukh S.
    [J]. PROGRESS IN AEROSPACE SCIENCES, 2008, 44 (7-8) : 479 - 502
  • [10] Three-dimensional effect on transonic rectangular cavity flows
    Chung, KM
    [J]. EXPERIMENTS IN FLUIDS, 2001, 30 (05) : 531 - 536