Generation and efficient measurement of single photons from fixed-frequency superconducting qubits

被引:26
作者
Kindel, William F. [1 ,2 ,3 ]
Schroer, M. D. [4 ]
Lehnert, K. W. [1 ,2 ,3 ,5 ]
机构
[1] Univ Colorado, JILA, Boulder, CO 80309 USA
[2] NIST, Boulder, CO 80309 USA
[3] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[4] GE Aviat, Cincinnati, OH 45215 USA
[5] NIST, Boulder, CO 80305 USA
基金
美国国家科学基金会;
关键词
MICROWAVE FIELDS; QUANTUM; CIRCUITS;
D O I
10.1103/PhysRevA.93.033817
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate and evaluate an on-demand source of single itinerant microwave photons. Photons are generated using a highly coherent, fixed-frequency qubit-cavity system, and a protocol where the microwave control field is far detuned from the photon emission frequency. By using a Josephson parametric amplifier (JPA), we perform efficient single-quadrature detection of the state emerging from the cavity. We characterize the imperfections of the photon generation and detection, including detection inefficiency and state infidelity caused by measurement back-action over a range of JPA gains from 17 to 33 dB. We observe that both detection efficiency and undesirable back-action increase with JPA gain. We find that the density matrix has its maximum single-photon component rho(11) = 0.36 +/- 0.01 at 29 dB JPA gain. At this gain, back-action of the JPA creates cavity photon number fluctuations that we model as a thermal distribution with an average photon number (n) over bar = 0.041 +/- 0.003.
引用
收藏
页数:8
相关论文
共 34 条
  • [1] Andrews RW, 2014, NAT PHYS, V10, P321, DOI [10.1038/NPHYS2911, 10.1038/nphys2911]
  • [2] Superconducting quantum circuits at the surface code threshold for fault tolerance
    Barends, R.
    Kelly, J.
    Megrant, A.
    Veitia, A.
    Sank, D.
    Jeffrey, E.
    White, T. C.
    Mutus, J.
    Fowler, A. G.
    Campbell, B.
    Chen, Y.
    Chen, Z.
    Chiaro, B.
    Dunsworth, A.
    Neill, C.
    O'Malley, P.
    Roushan, P.
    Vainsencher, A.
    Wenner, J.
    Korotkov, A. N.
    Cleland, A. N.
    Martinis, John M.
    [J]. NATURE, 2014, 508 (7497) : 500 - 503
  • [3] Quantum-information processing with circuit quantum electrodynamics
    Blais, Alexandre
    Gambetta, Jay
    Wallraff, A.
    Schuster, D. I.
    Girvin, S. M.
    Devoret, M. H.
    Schoelkopf, R. J.
    [J]. PHYSICAL REVIEW A, 2007, 75 (03):
  • [4] Amplification and squeezing of quantum noise with a tunable Josephson metamaterial
    Castellanos-Beltran, M. A.
    Irwin, K. D.
    Hilton, G. C.
    Vale, L. R.
    Lehnert, K. W.
    [J]. NATURE PHYSICS, 2008, 4 (12) : 929 - 931
  • [5] Improved superconducting qubit coherence using titanium nitride
    Chang, Josephine B.
    Vissers, Michael R.
    Corcoles, Antonio D.
    Sandberg, Martin
    Gao, Jiansong
    Abraham, David W.
    Chow, Jerry M.
    Gambetta, Jay M.
    Rothwell, Mary Beth
    Keefe, George A.
    Steffen, Matthias
    Pappas, David P.
    [J]. APPLIED PHYSICS LETTERS, 2013, 103 (01)
  • [6] Superconducting Circuits for Quantum Information: An Outlook
    Devoret, M. H.
    Schoelkopf, R. J.
    [J]. SCIENCE, 2013, 339 (6124) : 1169 - 1174
  • [7] Experimental State Tomography of Itinerant Single Microwave Photons
    Eichler, C.
    Bozyigit, D.
    Lang, C.
    Steffen, L.
    Fink, J.
    Wallraff, A.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (22)
  • [8] Eichler C., 2013, THESIS ETH ZURICH
  • [9] Superconducting Quantum Node for Entanglement and Storage of Microwave Radiation
    Flurin, E.
    Roch, N.
    Pillet, J. D.
    Mallet, F.
    Huard, B.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (09)
  • [10] Gibbs B.P., 2011, Advanced Kalman Filtering, Least Squares and Modelling: A Practical Handbook