Eigenvalue problems of Nordhaus-Gaddum type

被引:25
作者
Nikiforov, Vladimir [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
关键词
graph eigenvalues; complementary graph; maximum eigenvalue; minimum eigenvalue; Nordhaus-Gaddum problems;
D O I
10.1016/j.disc.2006.07.035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph with n vertices and in edges and let mu(1) (G) >= ... >= (G) be the eigenvalues of its adjacency matrix. We discuss the following general problem. For k fixed and n large, find or estimate f(k)(n) = max(nu(G)=n)vertical bar mu(k)(G)vertical bar+vertical bar mu(k)((G) over bar) In particular, we prove that (4)/(3)n - 2 <= f(1) (n) < (root 2 - c)n for some c > 10(-7) independent of n. We also show that (root 2)/(2)n - 3 < f(2)(n) < (root 2)/(2) n, (root 2)/(2)n - 3 < f(2)(n) < (root 3)/(2) n, (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:774 / 780
页数:7
相关论文
共 11 条
[1]  
Bollobas B., 1998, GRAD TEXT M, V184, DOI 10.1007/978-1-4612-0619-4_7
[2]  
Cvetkovic D. M., 1980, Spectra of Graphs-Theory and Application
[3]   A sharp upper bound for the spectral radius of the Nordhaus-Gaddum type [J].
Hong, Y ;
Shu, JL .
DISCRETE MATHEMATICS, 2000, 211 (1-3) :229-232
[4]   A sharp upper bound of the spectral radius of graphs [J].
Hong, Y ;
Shu, JL ;
Fang, KF .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2001, 81 (02) :177-183
[5]  
HONG Y, 1995, J COMB THEORY B, V65, P262
[6]  
Horn RA., 1990, MATRIX ANAL, DOI [10.1017/CBO9780511810817, DOI 10.1017/CBO9780511810817]
[7]  
Li X. L., 1996, J N CHINA TECHNOL I, V17, P297
[8]   Some inequalities for the largest eigenvalue of a graph [J].
Nikiforov, V .
COMBINATORICS PROBABILITY & COMPUTING, 2002, 11 (02) :179-189
[9]   Eigenvalues and degree deviation in graphs [J].
Nikiforov, V .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 414 (01) :347-360
[10]  
Nosal E., 1970, THESIS U CALGARY